Mineral chemistry of apatite, amphibole, biotite, and magnetite from the Masjeddaghi porphyry Cu-Au deposit, NW Iran: petrogenetic and metallogenic implications
The Masjeddaghi porphyry Cu-Au deposit is situated in the Alborz-Azarbaijan structural zone of northwest Iran. Chemical compositions of rock-forming (biotite, amphibole) and accessory minerals (magnetite, apatite) in the potassic to propylitic altered diorite porphyry of Masjeddaghi serve as key ind...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Frontiers Media S.A.
2025-06-01
|
| Series: | Frontiers in Earth Science |
| Subjects: | |
| Online Access: | https://www.frontiersin.org/articles/10.3389/feart.2025.1603296/full |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849431262797758464 |
|---|---|
| author | Zohreh Rahnama Shohreh Hassanpour Dany Savard Zahid Shah |
| author_facet | Zohreh Rahnama Shohreh Hassanpour Dany Savard Zahid Shah |
| author_sort | Zohreh Rahnama |
| collection | DOAJ |
| description | The Masjeddaghi porphyry Cu-Au deposit is situated in the Alborz-Azarbaijan structural zone of northwest Iran. Chemical compositions of rock-forming (biotite, amphibole) and accessory minerals (magnetite, apatite) in the potassic to propylitic altered diorite porphyry of Masjeddaghi serve as key indicators of magmatic-hydrothermal mineralization. In situ LA-ICP-MS was conducted to analyze trace element contents of selected magnetite-bearing samples, while EMPA analyzed biotite, amphibole, and apatite compositions. The mineral compositions show a parental magma with calc-alkaline features, suggesting a source comprised of both subduction mantle-derived and crust-derived materials, and the Masjeddaghi mineralizing magmas have a relatively elevated ƒO2 and are classified as oxidized I-type magmas. The calculated temperature ranges are constrained by Al-in-amphibole geothermometry, saturation temperature of apatite, and the Ti-in-biotite geothermometer (830°C–877°C) (845°C-918°C) and (723°C–782°C), respectively, whereas the Al-in-amphibole geobarometry exhibits formation pressure (120–186 MPa; relating to depths ranging from 4 to 10 km) and H2Omelt content at time of crystallization (4.10–4.46 wt%), indicating formation of a hydrous calc-alkaline magma from a deep magmatic reservoir. The intrusion of oxidized hydrous mafic magma from a deeper magma source likely promoted wide magma mixing and prolonged fractional crystallization within the evolved dioritic magma chamber, resulting in exsolution of the ore-forming fluids and the formation of the Masjeddaghi deposit. |
| format | Article |
| id | doaj-art-b6aac2cce9a347ccb5c53a67af00f7fb |
| institution | Kabale University |
| issn | 2296-6463 |
| language | English |
| publishDate | 2025-06-01 |
| publisher | Frontiers Media S.A. |
| record_format | Article |
| series | Frontiers in Earth Science |
| spelling | doaj-art-b6aac2cce9a347ccb5c53a67af00f7fb2025-08-20T03:27:43ZengFrontiers Media S.A.Frontiers in Earth Science2296-64632025-06-011310.3389/feart.2025.16032961603296Mineral chemistry of apatite, amphibole, biotite, and magnetite from the Masjeddaghi porphyry Cu-Au deposit, NW Iran: petrogenetic and metallogenic implicationsZohreh Rahnama0Shohreh Hassanpour1Dany Savard2Zahid Shah3ANGLO REM CA Exploration Mining Ltd, Astana, KazakhstanDepartment of Geology, Payame Noor University, Tehran, IranLabMaTer, UQAC Laboratory, Université du Québec à Chicoutimi, Saguenay, QC, CanadaSchool of Mining and Geosciences, Nazarbayev University, Astana, KazakhstanThe Masjeddaghi porphyry Cu-Au deposit is situated in the Alborz-Azarbaijan structural zone of northwest Iran. Chemical compositions of rock-forming (biotite, amphibole) and accessory minerals (magnetite, apatite) in the potassic to propylitic altered diorite porphyry of Masjeddaghi serve as key indicators of magmatic-hydrothermal mineralization. In situ LA-ICP-MS was conducted to analyze trace element contents of selected magnetite-bearing samples, while EMPA analyzed biotite, amphibole, and apatite compositions. The mineral compositions show a parental magma with calc-alkaline features, suggesting a source comprised of both subduction mantle-derived and crust-derived materials, and the Masjeddaghi mineralizing magmas have a relatively elevated ƒO2 and are classified as oxidized I-type magmas. The calculated temperature ranges are constrained by Al-in-amphibole geothermometry, saturation temperature of apatite, and the Ti-in-biotite geothermometer (830°C–877°C) (845°C-918°C) and (723°C–782°C), respectively, whereas the Al-in-amphibole geobarometry exhibits formation pressure (120–186 MPa; relating to depths ranging from 4 to 10 km) and H2Omelt content at time of crystallization (4.10–4.46 wt%), indicating formation of a hydrous calc-alkaline magma from a deep magmatic reservoir. The intrusion of oxidized hydrous mafic magma from a deeper magma source likely promoted wide magma mixing and prolonged fractional crystallization within the evolved dioritic magma chamber, resulting in exsolution of the ore-forming fluids and the formation of the Masjeddaghi deposit.https://www.frontiersin.org/articles/10.3389/feart.2025.1603296/fullbiotiteamphiboleapatitemagnetiteMasjeddaghi porphyry Cu-Au depositIran |
| spellingShingle | Zohreh Rahnama Shohreh Hassanpour Dany Savard Zahid Shah Mineral chemistry of apatite, amphibole, biotite, and magnetite from the Masjeddaghi porphyry Cu-Au deposit, NW Iran: petrogenetic and metallogenic implications Frontiers in Earth Science biotite amphibole apatite magnetite Masjeddaghi porphyry Cu-Au deposit Iran |
| title | Mineral chemistry of apatite, amphibole, biotite, and magnetite from the Masjeddaghi porphyry Cu-Au deposit, NW Iran: petrogenetic and metallogenic implications |
| title_full | Mineral chemistry of apatite, amphibole, biotite, and magnetite from the Masjeddaghi porphyry Cu-Au deposit, NW Iran: petrogenetic and metallogenic implications |
| title_fullStr | Mineral chemistry of apatite, amphibole, biotite, and magnetite from the Masjeddaghi porphyry Cu-Au deposit, NW Iran: petrogenetic and metallogenic implications |
| title_full_unstemmed | Mineral chemistry of apatite, amphibole, biotite, and magnetite from the Masjeddaghi porphyry Cu-Au deposit, NW Iran: petrogenetic and metallogenic implications |
| title_short | Mineral chemistry of apatite, amphibole, biotite, and magnetite from the Masjeddaghi porphyry Cu-Au deposit, NW Iran: petrogenetic and metallogenic implications |
| title_sort | mineral chemistry of apatite amphibole biotite and magnetite from the masjeddaghi porphyry cu au deposit nw iran petrogenetic and metallogenic implications |
| topic | biotite amphibole apatite magnetite Masjeddaghi porphyry Cu-Au deposit Iran |
| url | https://www.frontiersin.org/articles/10.3389/feart.2025.1603296/full |
| work_keys_str_mv | AT zohrehrahnama mineralchemistryofapatiteamphibolebiotiteandmagnetitefromthemasjeddaghiporphyrycuaudepositnwiranpetrogeneticandmetallogenicimplications AT shohrehhassanpour mineralchemistryofapatiteamphibolebiotiteandmagnetitefromthemasjeddaghiporphyrycuaudepositnwiranpetrogeneticandmetallogenicimplications AT danysavard mineralchemistryofapatiteamphibolebiotiteandmagnetitefromthemasjeddaghiporphyrycuaudepositnwiranpetrogeneticandmetallogenicimplications AT zahidshah mineralchemistryofapatiteamphibolebiotiteandmagnetitefromthemasjeddaghiporphyrycuaudepositnwiranpetrogeneticandmetallogenicimplications |