Enhancing navigation performance in unknown environments using spiking neural networks and reinforcement learning with asymptotic gradient method

Abstract Achieving accurate and generalized autonomous navigation in unknown environments poses a significant challenge in robotics and artificial intelligence. Animals exhibits superlative navigation capabilities by combining the representation of internal neurals and sensory cues of self-motion an...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaode Liu, Yufei Guo, Yuanpei Chen, Jie Zhou, Yuhan Zhang, Weihang Peng, Xuhui Huang, Zhe Ma
Format: Article
Language:English
Published: Springer 2025-01-01
Series:Complex & Intelligent Systems
Subjects:
Online Access:https://doi.org/10.1007/s40747-024-01777-6
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Achieving accurate and generalized autonomous navigation in unknown environments poses a significant challenge in robotics and artificial intelligence. Animals exhibits superlative navigation capabilities by combining the representation of internal neurals and sensory cues of self-motion and external information. This paper proposes a brain-inspired navigation method based upon the spiking neural networks (SNN) and reinforcement learning, integrated with a lidar system that serves as the local environment explorer, by which realizes high performance of obstacle avoidance and target arrival in mapless circumstances. An asymptotic gradient method is introduced to optimize the backpropagation during training, which facilitates the improvement of model robustness. The results of our experiments conducted on the Gazebo platform showcase how our approach effectively improves navigation performance in various intricate environments. Our approach yielded a higher success navigation rate ranging from 2% to 5%, depending on the SNN timesteps. Considering the inherent lower computational cost of SNN, this work contributes to advancing the fusion of SNN and reinforcement learning techniques for energy-efficient autonomous navigation tasks in real-world mapless scenarios.
ISSN:2199-4536
2198-6053