Numerical Homogenization Method Applied to Evaluate Effective Converse Flexoelectric Coefficients
This paper presents a numerical homogenization method for estimating the effective converse flexoelectric coefficients. A 2D model made of two-phase composite is developed at the microscale in consideration of a representative volume element that includes a continuous flexoelectric fiber embedded in...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-02-01
|
| Series: | Computation |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2079-3197/13/2/48 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper presents a numerical homogenization method for estimating the effective converse flexoelectric coefficients. A 2D model made of two-phase composite is developed at the microscale in consideration of a representative volume element that includes a continuous flexoelectric fiber embedded in a pure elastic matrix. In the implementation, the constitutive equations are derived from the electromechanical enthalpy accounting for higher-order coupling terms. Electric boundary conditions associated with an inhomogeneous electric field are imposed, allowing the approximation of the generated mechanical strains and stresses. Accordingly, the numerical simulations yield the overall equivalent converse flexoelectricity tensor for the longitudinal, transversal, and shear couplings. The results showed that the composite undergoes an obvious straining, which creates actuation due to the converse effect. The components of the homogenized longitudinal and transverse coefficients were found to be dependent on the volume fraction and elastic properties of the constituents. |
|---|---|
| ISSN: | 2079-3197 |