Analytical Methods for Wind-Driven Dynamic Behavior of Pear Leaves (<i>Pyrus pyrifolia</i>)
The fluttering of leaves under wind fields significantly impacts the efficiency and precision of agricultural spraying. However, existing spraying technologies often overlook the complex mechanisms of wind–leaf interactions. This study integrates the fine-tuned Segment Anything Model 2 with multi-di...
Saved in:
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Agriculture |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2077-0472/15/8/886 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The fluttering of leaves under wind fields significantly impacts the efficiency and precision of agricultural spraying. However, existing spraying technologies often overlook the complex mechanisms of wind–leaf interactions. This study integrates the fine-tuned Segment Anything Model 2 with multi-dimensional dynamic behavior analysis to provide a systematic approach for investigating leaf fluttering under wind fields. First, a segmentation algorithm based on Principal Component Analysis was employed to eliminate background interference in leaf fluttering data. The results showed that the segmentation algorithm achieved an Intersection over Union (IoU) ranging from 98.2% to 98.7%, with Precision reaching 99.0% to 99.5%, demonstrating high segmentation accuracy and reliability. Building on this, experiments on leaf segmentation and tracking in dynamic scenarios were conducted using the SAM2-FT model. The results indicated that SAM2-FT effectively captured the dynamic behavior of leaves by integrating spatiotemporal information, achieving Precision and AP50/% values exceeding 97%. Its overall performance significantly outperformed mainstream YOLO-series models. In the analysis of dynamic response patterns, the Hilbert transform and time-series quantification methods were introduced to reveal the amplitude, frequency, and trajectory characteristics of a leaf fluttering under wind fields across three dimensions: area, inclination angle, and centroid. This comprehensive analysis highlights the dynamic response characteristics of leaves to wind field perturbations. |
|---|---|
| ISSN: | 2077-0472 |