Sine-Weibull Geometric Mixture and Nonmixture Cure Rate Models with Applications to Lifetime Data

In this study, two new distributions are developed by compounding Sine-Weibull and zero-truncated geometric distributions. The quantile and ordinary moments of the distributions are obtained. Plots of the hazard rate functions of the distributions show that the distributions exhibit nonmonotonic fai...

Full description

Saved in:
Bibliographic Details
Main Authors: Irene Dekomwine Angbing, Suleman Nasiru, Dioggban Jakperik
Format: Article
Language:English
Published: Wiley 2022-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/2022/1798278
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, two new distributions are developed by compounding Sine-Weibull and zero-truncated geometric distributions. The quantile and ordinary moments of the distributions are obtained. Plots of the hazard rate functions of the distributions show that the distributions exhibit nonmonotonic failure rates. Also, plots of the densities of the distributions show that they exhibit decreasing, skewed, and approximately symmetric shapes, among others. Mixture and nonmixture cure rate models based on these distributions are also developed. The estimators of the parameters of the cure rate models are shown to be consistent via simulation studies. Covariates are introduced into the cure rate models via the logit link function. Finally, the performance of the distributions and the cure rate and regression models is demonstrated using real datasets. The results show that the developed distributions can serve as alternatives to existing models for survival data analyses.
ISSN:1687-0425