Metal organic frameworks derived core-shell structured C@TiC nanocomposites with excellent microwave absorption performance
With aim to prepare nano-microwave absorption material with excellent microwave absorption performance, core-shell structured C@TiC nanocomposites with tunable nanostructures and morphologies were successfully synthesized through one-step pyrolysis of the Ti-based MOFs precursors at a low temperatur...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2024-12-01
|
| Series: | Open Ceramics |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S2666539524001640 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | With aim to prepare nano-microwave absorption material with excellent microwave absorption performance, core-shell structured C@TiC nanocomposites with tunable nanostructures and morphologies were successfully synthesized through one-step pyrolysis of the Ti-based MOFs precursors at a low temperature. Effects of various metal/linker ratio, solvent types and Hacac addition on the microstructures and properties of the C@TiC nanocomposites were thoroughly investigated, demonstrating that the TiC core-C shell structure could be effectively tailored. Compared to pure TiC nanoparticles, the C@TiC nanocomposites exhibited significantly improved microwave absorption performance, including the stronger RL peak of -35.64 dB (10.72 GHz) at 2.4 mm thicknesses and the enhanced effective microwave wave absorption width (EAB, RL≤-10 dB) spanning the entire C-band and X-band, which is ascribed to the better impedance matching and richer microwave loss mechanisms. As a result, C@TiC nanocomposites show great potential to be applied as absorbers with strong microwave absorption and wide absorption bandwidth. |
|---|---|
| ISSN: | 2666-5395 |