Hints of Disk Substructure in the First Brown Dwarf with a Dynamical Mass Constraint

We present high-resolution Atacama Large Millimeter/submillimeter Array (ALMA) observations at 0.89 mm of the Class II brown dwarf 2MASS J04442713+2512164 (2M0444), achieving a spatial resolution of 0 $\mathop{.}\limits^{^{\prime\prime} }$ 046 (∼6.4 au at the distance to the source). These observati...

Full description

Saved in:
Bibliographic Details
Main Authors: Alejandro Santamaría-Miranda, Pietro Curone, Laura Pérez, Nicolas T. Kurtovic, Carolina Agurto-Gangas, Anibal Sierra, Itziar de Gregorio-Monsalvo, Nuria Huélamo, James M. Miley, Aina Palau, Paola Pinilla, Isabel Rebollido, Álvaro Ribas, Pablo Rivière-Marichalar, Matthias R. Schreiber, Jinshi Sai, Benjamín Carrera
Format: Article
Language:English
Published: IOP Publishing 2025-01-01
Series:The Astrophysical Journal Letters
Subjects:
Online Access:https://doi.org/10.3847/2041-8213/add71f
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850231432670085120
author Alejandro Santamaría-Miranda
Pietro Curone
Laura Pérez
Nicolas T. Kurtovic
Carolina Agurto-Gangas
Anibal Sierra
Itziar de Gregorio-Monsalvo
Nuria Huélamo
James M. Miley
Aina Palau
Paola Pinilla
Isabel Rebollido
Álvaro Ribas
Pablo Rivière-Marichalar
Matthias R. Schreiber
Jinshi Sai
Benjamín Carrera
author_facet Alejandro Santamaría-Miranda
Pietro Curone
Laura Pérez
Nicolas T. Kurtovic
Carolina Agurto-Gangas
Anibal Sierra
Itziar de Gregorio-Monsalvo
Nuria Huélamo
James M. Miley
Aina Palau
Paola Pinilla
Isabel Rebollido
Álvaro Ribas
Pablo Rivière-Marichalar
Matthias R. Schreiber
Jinshi Sai
Benjamín Carrera
author_sort Alejandro Santamaría-Miranda
collection DOAJ
description We present high-resolution Atacama Large Millimeter/submillimeter Array (ALMA) observations at 0.89 mm of the Class II brown dwarf 2MASS J04442713+2512164 (2M0444), achieving a spatial resolution of 0 $\mathop{.}\limits^{^{\prime\prime} }$ 046 (∼6.4 au at the distance to the source). These observations targeted continuum emission together with ^12 CO (3–2) molecular line. The line emission traces a Keplerian disk, allowing us to derive a dynamical mass between 0.043 and 0.092 M _⊙ for the central object. We constrain the gas-to-dust disk size ratio to be ∼7, consistent with efficient radial drift. However, the observed dust emission suggests that a dust trap is present, enough to retain some dust particles. We perform visibility fitting of the continuum emission, and under the assumption of annular substructure, our best fit shows a gap and a ring at 98.1 ${}_{-8.4}^{+4.2}$ mas (∼14 au) and 116.0 ${}_{-4.8}^{+4.2}$ mas (∼16 au), respectively, with a gap width of 20 mas (∼3 au). To ensure robustness, the data were analyzed through a variety of methods in both the image and uv planes, employing multiple codes and approaches. This tentative disk structure could be linked to a possible planetary companion in the process of formation. These results provide the first dynamical mass of the lowest mass object to date, together with the possible direct detection of a substructure, offering new insights into disk dynamics and planet formation in the very low-mass regime. Future higher spatial resolution ALMA observations will be essential to confirm these findings and further investigate the link between substructures and planet formation in brown dwarf disks.
format Article
id doaj-art-b5a18400102d4abab49a1d2fc86b265e
institution OA Journals
issn 2041-8205
language English
publishDate 2025-01-01
publisher IOP Publishing
record_format Article
series The Astrophysical Journal Letters
spelling doaj-art-b5a18400102d4abab49a1d2fc86b265e2025-08-20T02:03:31ZengIOP PublishingThe Astrophysical Journal Letters2041-82052025-01-019861L1110.3847/2041-8213/add71fHints of Disk Substructure in the First Brown Dwarf with a Dynamical Mass ConstraintAlejandro Santamaría-Miranda0https://orcid.org/0000-0001-6267-2820Pietro Curone1https://orcid.org/0000-0003-2045-2154Laura Pérez2https://orcid.org/0000-0002-1199-9564Nicolas T. Kurtovic3https://orcid.org/0000-0002-2358-4796Carolina Agurto-Gangas4https://orcid.org/0000-0002-7238-2306Anibal Sierra5https://orcid.org/0000-0002-5991-8073Itziar de Gregorio-Monsalvo6https://orcid.org/0000-0003-4518-407XNuria Huélamo7https://orcid.org/0000-0002-2711-8143James M. Miley8https://orcid.org/0000-0002-1575-680XAina Palau9https://orcid.org/0000-0002-9569-9234Paola Pinilla10https://orcid.org/0000-0001-8764-1780Isabel Rebollido11https://orcid.org/0000-0002-4388-6417Álvaro Ribas12https://orcid.org/0000-0003-3133-3580Pablo Rivière-Marichalar13https://orcid.org/0000-0003-0969-8137Matthias R. Schreiber14https://orcid.org/0000-0003-3903-8009Jinshi Sai15https://orcid.org/0000-0003-4361-5577Benjamín Carrera16https://orcid.org/0009-0004-1435-4421Departamento de Astronomía, Universidad de Chile , Camino El Observatorio 1515, Las Condes, Santiago, Chile ; alejandrosantamariamiranda@gmail.comDepartamento de Astronomía, Universidad de Chile , Camino El Observatorio 1515, Las Condes, Santiago, Chile ; alejandrosantamariamiranda@gmail.comDepartamento de Astronomía, Universidad de Chile , Camino El Observatorio 1515, Las Condes, Santiago, Chile ; alejandrosantamariamiranda@gmail.comMax-Planck-Institut für Extraterrestrische Physik , Giessenbachstrasse1, 85748 Garching, GermanyDepartamento de Astronomía, Universidad de Chile , Camino El Observatorio 1515, Las Condes, Santiago, Chile ; alejandrosantamariamiranda@gmail.comMullard Space Science Laboratory, University College London , Holmbury St Mary, Dorking, Surrey RH5 6NT, UKEuropean Southern Observatory , 3107, Alonso de Córdova, Santiago de Chile, ChileCentro de Astrobiología (INTA-CSIC) , ESAC campus, Camino bajo del Castillo s/n, Urb. Villafranca del Castillo, 28692 Villanueva de la Cañada, Madrid, SpainDepartamento de F ísica, Universidad de Santiago de Chile , Av. Victor Jara 3659, Santiago, Chile; Millennium Nucleus on Young Exoplanets and their Moons (YEMS) , Chile; Center for Interdisciplinary Research in Astrophysics Space Exploration (CIRAS), Universidad de Santiago de Chile , ChileInstituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México , Antigua Carretera a Pátzcuaro #8701, Ex-Hda. San José de la Huerta, Morelia, Michoacán, C.P. 58089, MéxicoMullard Space Science Laboratory, University College London , Holmbury St Mary, Dorking, Surrey RH5 6NT, UKEuropean Space Agency (ESA), European Space Astronomy Centre (ESAC) , Camino Bajo del Castillo s/n, 28692 Villanueva de la Cañada, Madrid, SpainInstitute of Astronomy, University of Cambridge , Madingley Road, Cambridge, CB3 0HA, UKObservatorio Astronómico Nacional (OAN , IGN), Calle Alfonso XII, 3. 28014 Madrid, SpainDepartamento de Física, Universidad Técnica Federico Santa María , Av. España 1680, Valparaíso, ChileAcademia Sinica Institute of Astronomy & Astrophysics , 11F of Astronomy-Mathematics Building, AS/NTU, No.1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, R.O.C.Departamento de Astronomía, Universidad de Chile , Camino El Observatorio 1515, Las Condes, Santiago, Chile ; alejandrosantamariamiranda@gmail.comWe present high-resolution Atacama Large Millimeter/submillimeter Array (ALMA) observations at 0.89 mm of the Class II brown dwarf 2MASS J04442713+2512164 (2M0444), achieving a spatial resolution of 0 $\mathop{.}\limits^{^{\prime\prime} }$ 046 (∼6.4 au at the distance to the source). These observations targeted continuum emission together with ^12 CO (3–2) molecular line. The line emission traces a Keplerian disk, allowing us to derive a dynamical mass between 0.043 and 0.092 M _⊙ for the central object. We constrain the gas-to-dust disk size ratio to be ∼7, consistent with efficient radial drift. However, the observed dust emission suggests that a dust trap is present, enough to retain some dust particles. We perform visibility fitting of the continuum emission, and under the assumption of annular substructure, our best fit shows a gap and a ring at 98.1 ${}_{-8.4}^{+4.2}$ mas (∼14 au) and 116.0 ${}_{-4.8}^{+4.2}$ mas (∼16 au), respectively, with a gap width of 20 mas (∼3 au). To ensure robustness, the data were analyzed through a variety of methods in both the image and uv planes, employing multiple codes and approaches. This tentative disk structure could be linked to a possible planetary companion in the process of formation. These results provide the first dynamical mass of the lowest mass object to date, together with the possible direct detection of a substructure, offering new insights into disk dynamics and planet formation in the very low-mass regime. Future higher spatial resolution ALMA observations will be essential to confirm these findings and further investigate the link between substructures and planet formation in brown dwarf disks.https://doi.org/10.3847/2041-8213/add71fBrown dwarfsCircumstellar dustMillimeter astronomyPlanet formationProtoplanetary disksRadio interferometry
spellingShingle Alejandro Santamaría-Miranda
Pietro Curone
Laura Pérez
Nicolas T. Kurtovic
Carolina Agurto-Gangas
Anibal Sierra
Itziar de Gregorio-Monsalvo
Nuria Huélamo
James M. Miley
Aina Palau
Paola Pinilla
Isabel Rebollido
Álvaro Ribas
Pablo Rivière-Marichalar
Matthias R. Schreiber
Jinshi Sai
Benjamín Carrera
Hints of Disk Substructure in the First Brown Dwarf with a Dynamical Mass Constraint
The Astrophysical Journal Letters
Brown dwarfs
Circumstellar dust
Millimeter astronomy
Planet formation
Protoplanetary disks
Radio interferometry
title Hints of Disk Substructure in the First Brown Dwarf with a Dynamical Mass Constraint
title_full Hints of Disk Substructure in the First Brown Dwarf with a Dynamical Mass Constraint
title_fullStr Hints of Disk Substructure in the First Brown Dwarf with a Dynamical Mass Constraint
title_full_unstemmed Hints of Disk Substructure in the First Brown Dwarf with a Dynamical Mass Constraint
title_short Hints of Disk Substructure in the First Brown Dwarf with a Dynamical Mass Constraint
title_sort hints of disk substructure in the first brown dwarf with a dynamical mass constraint
topic Brown dwarfs
Circumstellar dust
Millimeter astronomy
Planet formation
Protoplanetary disks
Radio interferometry
url https://doi.org/10.3847/2041-8213/add71f
work_keys_str_mv AT alejandrosantamariamiranda hintsofdisksubstructureinthefirstbrowndwarfwithadynamicalmassconstraint
AT pietrocurone hintsofdisksubstructureinthefirstbrowndwarfwithadynamicalmassconstraint
AT lauraperez hintsofdisksubstructureinthefirstbrowndwarfwithadynamicalmassconstraint
AT nicolastkurtovic hintsofdisksubstructureinthefirstbrowndwarfwithadynamicalmassconstraint
AT carolinaagurtogangas hintsofdisksubstructureinthefirstbrowndwarfwithadynamicalmassconstraint
AT anibalsierra hintsofdisksubstructureinthefirstbrowndwarfwithadynamicalmassconstraint
AT itziardegregoriomonsalvo hintsofdisksubstructureinthefirstbrowndwarfwithadynamicalmassconstraint
AT nuriahuelamo hintsofdisksubstructureinthefirstbrowndwarfwithadynamicalmassconstraint
AT jamesmmiley hintsofdisksubstructureinthefirstbrowndwarfwithadynamicalmassconstraint
AT ainapalau hintsofdisksubstructureinthefirstbrowndwarfwithadynamicalmassconstraint
AT paolapinilla hintsofdisksubstructureinthefirstbrowndwarfwithadynamicalmassconstraint
AT isabelrebollido hintsofdisksubstructureinthefirstbrowndwarfwithadynamicalmassconstraint
AT alvaroribas hintsofdisksubstructureinthefirstbrowndwarfwithadynamicalmassconstraint
AT pablorivieremarichalar hintsofdisksubstructureinthefirstbrowndwarfwithadynamicalmassconstraint
AT matthiasrschreiber hintsofdisksubstructureinthefirstbrowndwarfwithadynamicalmassconstraint
AT jinshisai hintsofdisksubstructureinthefirstbrowndwarfwithadynamicalmassconstraint
AT benjamincarrera hintsofdisksubstructureinthefirstbrowndwarfwithadynamicalmassconstraint