Tempered Riemann–Liouville Fractional Operators: Stability Analysis and Their Role in Kinetic Equations

Mathematics and physics are deeply interconnected. In fact, physics relies on mathematical tools like calculus and differential equations. The aim of this article is to introduce tempered Riemann–Liouville (RL) fractional operators and their properties with applications in mathematical physics. The...

Full description

Saved in:
Bibliographic Details
Main Authors: Muhammad Umer, Muhammad Samraiz, Muath Awadalla, Meraa Arab
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/9/3/187
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mathematics and physics are deeply interconnected. In fact, physics relies on mathematical tools like calculus and differential equations. The aim of this article is to introduce tempered Riemann–Liouville (RL) fractional operators and their properties with applications in mathematical physics. The tempered RL substantial fractional derivative is also defined, and its properties are discussed. The Laplace transforms (LTs) of the introduced fractional operators are evaluated. The Hyers–Ulam stability and the existence of a novel tempered fractional differential equation are examined. Moreover, a fractional integro-differential kinetic equation is formulated, and the LT is used to find its solution. A growth model and its graphical representation are established, highlighting the role of novel fractional operators in modeling complex dynamical systems. The developed mathematical framework offers valuable insights into solving a range of scenarios in mathematical physics.
ISSN:2504-3110