Intranasal Multiepitope PD‐L1‐siRNA‐Based Nanovaccine: The Next‐Gen COVID‐19 Immunotherapy

Abstract The first approved vaccines for human use against severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) are nanotechnology‐based. Although they are modular, rapidly produced, and can reduce disease severity, the currently available vaccines are restricted in preventing infection, str...

Full description

Saved in:
Bibliographic Details
Main Authors: Rita C. Acúrcio, Ron Kleiner, Daniella Vaskovich‐Koubi, Bárbara Carreira, Yulia Liubomirski, Carolina Palma, Adva Yeheskel, Eilam Yeini, Ana S. Viana, Vera Ferreira, Carlos Araújo, Michael Mor, Natalia T. Freund, Eran Bacharach, João Gonçalves, Mira Toister‐Achituv, Manon Fabregue, Solene Matthieu, Capucine Guerry, Ana Zarubica, Sarit Aviel‐Ronen, Helena F. Florindo, Ronit Satchi‐Fainaro
Format: Article
Language:English
Published: Wiley 2024-10-01
Series:Advanced Science
Subjects:
Online Access:https://doi.org/10.1002/advs.202404159
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850201513097428992
author Rita C. Acúrcio
Ron Kleiner
Daniella Vaskovich‐Koubi
Bárbara Carreira
Yulia Liubomirski
Carolina Palma
Adva Yeheskel
Eilam Yeini
Ana S. Viana
Vera Ferreira
Carlos Araújo
Michael Mor
Natalia T. Freund
Eran Bacharach
João Gonçalves
Mira Toister‐Achituv
Manon Fabregue
Solene Matthieu
Capucine Guerry
Ana Zarubica
Sarit Aviel‐Ronen
Helena F. Florindo
Ronit Satchi‐Fainaro
author_facet Rita C. Acúrcio
Ron Kleiner
Daniella Vaskovich‐Koubi
Bárbara Carreira
Yulia Liubomirski
Carolina Palma
Adva Yeheskel
Eilam Yeini
Ana S. Viana
Vera Ferreira
Carlos Araújo
Michael Mor
Natalia T. Freund
Eran Bacharach
João Gonçalves
Mira Toister‐Achituv
Manon Fabregue
Solene Matthieu
Capucine Guerry
Ana Zarubica
Sarit Aviel‐Ronen
Helena F. Florindo
Ronit Satchi‐Fainaro
author_sort Rita C. Acúrcio
collection DOAJ
description Abstract The first approved vaccines for human use against severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) are nanotechnology‐based. Although they are modular, rapidly produced, and can reduce disease severity, the currently available vaccines are restricted in preventing infection, stressing the global demand for novel preventive vaccine technologies. Bearing this in mind, we set out to develop a flexible nanovaccine platform for nasal administration to induce mucosal immunity, which is fundamental for optimal protection against respiratory virus infection. The next‐generation multiepitope nanovaccines co‐deliver immunogenic peptides, selected by an immunoinformatic workflow, along with adjuvants and regulators of the PD‐L1 expression. As a case study, we focused on SARS‐CoV‐2 peptides as relevant antigens to validate the approach. This platform can evoke both local and systemic cellular‐ and humoral‐specific responses against SARS‐CoV‐2. This led to the secretion of immunoglobulin A (IgA), capable of neutralizing SARS‐CoV‐2, including variants of concern, following a heterologous immunization strategy. Considering the limitations of the required cold chain distribution for current nanotechnology‐based vaccines, it is shown that the lyophilized nanovaccine is stable for long‐term at room temperature and retains its in vivo efficacy upon reconstitution. This makes it particularly relevant for developing countries and offers a modular system adaptable to future viral threats.
format Article
id doaj-art-b5734eacdf3b49c7be9c99d042cb5913
institution OA Journals
issn 2198-3844
language English
publishDate 2024-10-01
publisher Wiley
record_format Article
series Advanced Science
spelling doaj-art-b5734eacdf3b49c7be9c99d042cb59132025-08-20T02:11:59ZengWileyAdvanced Science2198-38442024-10-011140n/an/a10.1002/advs.202404159Intranasal Multiepitope PD‐L1‐siRNA‐Based Nanovaccine: The Next‐Gen COVID‐19 ImmunotherapyRita C. Acúrcio0Ron Kleiner1Daniella Vaskovich‐Koubi2Bárbara Carreira3Yulia Liubomirski4Carolina Palma5Adva Yeheskel6Eilam Yeini7Ana S. Viana8Vera Ferreira9Carlos Araújo10Michael Mor11Natalia T. Freund12Eran Bacharach13João Gonçalves14Mira Toister‐Achituv15Manon Fabregue16Solene Matthieu17Capucine Guerry18Ana Zarubica19Sarit Aviel‐Ronen20Helena F. Florindo21Ronit Satchi‐Fainaro22Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy Universidade de Lisboa Lisbon 1649‐003 PortugalDepartment of Physiology and Pharmacology Faculty of Medicine Tel Aviv University Tel Aviv 6997801 IsraelDepartment of Physiology and Pharmacology Faculty of Medicine Tel Aviv University Tel Aviv 6997801 IsraelResearch Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy Universidade de Lisboa Lisbon 1649‐003 PortugalDepartment of Physiology and Pharmacology Faculty of Medicine Tel Aviv University Tel Aviv 6997801 IsraelResearch Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy Universidade de Lisboa Lisbon 1649‐003 PortugalThe Blavatnik Center for Drug Discovery Tel Aviv University Tel Aviv 6997801 IsraelDepartment of Physiology and Pharmacology Faculty of Medicine Tel Aviv University Tel Aviv 6997801 IsraelCenter of Chemistry and Biochemistry Faculty of Sciences University of Lisbon Lisbon 1749‐016 PortugalResearch Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy Universidade de Lisboa Lisbon 1649‐003 PortugalResearch Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy Universidade de Lisboa Lisbon 1649‐003 PortugalDepartment of Clinical Microbiology and Immunology Faculty of Medicine Tel Aviv University Tel Aviv 6997801 IsraelDepartment of Clinical Microbiology and Immunology Faculty of Medicine Tel Aviv University Tel Aviv 6997801 IsraelThe Shmunis School of Biomedicine and Cancer Research George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv 6997801 IsraelResearch Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy Universidade de Lisboa Lisbon 1649‐003 PortugalInter‐Lab, a subsidiary of Merck KGaA, South Industrial Area Yavne 8122004 IsraelCentre d'Immunophénomique Aix Marseille Université Inserm, CNRS, PHENOMIN Marseille 13284 FranceCentre d'Immunophénomique Aix Marseille Université Inserm, CNRS, PHENOMIN Marseille 13284 FranceCentre d'Immunophénomique Aix Marseille Université Inserm, CNRS, PHENOMIN Marseille 13284 FranceCentre d'Immunophénomique Aix Marseille Université Inserm, CNRS, PHENOMIN Marseille 13284 FranceAdelson School of Medicine Ariel University Ariel 4070000 IsraelResearch Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy Universidade de Lisboa Lisbon 1649‐003 PortugalDepartment of Physiology and Pharmacology Faculty of Medicine Tel Aviv University Tel Aviv 6997801 IsraelAbstract The first approved vaccines for human use against severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) are nanotechnology‐based. Although they are modular, rapidly produced, and can reduce disease severity, the currently available vaccines are restricted in preventing infection, stressing the global demand for novel preventive vaccine technologies. Bearing this in mind, we set out to develop a flexible nanovaccine platform for nasal administration to induce mucosal immunity, which is fundamental for optimal protection against respiratory virus infection. The next‐generation multiepitope nanovaccines co‐deliver immunogenic peptides, selected by an immunoinformatic workflow, along with adjuvants and regulators of the PD‐L1 expression. As a case study, we focused on SARS‐CoV‐2 peptides as relevant antigens to validate the approach. This platform can evoke both local and systemic cellular‐ and humoral‐specific responses against SARS‐CoV‐2. This led to the secretion of immunoglobulin A (IgA), capable of neutralizing SARS‐CoV‐2, including variants of concern, following a heterologous immunization strategy. Considering the limitations of the required cold chain distribution for current nanotechnology‐based vaccines, it is shown that the lyophilized nanovaccine is stable for long‐term at room temperature and retains its in vivo efficacy upon reconstitution. This makes it particularly relevant for developing countries and offers a modular system adaptable to future viral threats.https://doi.org/10.1002/advs.202404159Dendritic cellsIntranasalMHC class I and MHC class II peptidesNanovaccinesPD‐1/PD‐L1 immune checkpointsSARS‐CoV‐2
spellingShingle Rita C. Acúrcio
Ron Kleiner
Daniella Vaskovich‐Koubi
Bárbara Carreira
Yulia Liubomirski
Carolina Palma
Adva Yeheskel
Eilam Yeini
Ana S. Viana
Vera Ferreira
Carlos Araújo
Michael Mor
Natalia T. Freund
Eran Bacharach
João Gonçalves
Mira Toister‐Achituv
Manon Fabregue
Solene Matthieu
Capucine Guerry
Ana Zarubica
Sarit Aviel‐Ronen
Helena F. Florindo
Ronit Satchi‐Fainaro
Intranasal Multiepitope PD‐L1‐siRNA‐Based Nanovaccine: The Next‐Gen COVID‐19 Immunotherapy
Advanced Science
Dendritic cells
Intranasal
MHC class I and MHC class II peptides
Nanovaccines
PD‐1/PD‐L1 immune checkpoints
SARS‐CoV‐2
title Intranasal Multiepitope PD‐L1‐siRNA‐Based Nanovaccine: The Next‐Gen COVID‐19 Immunotherapy
title_full Intranasal Multiepitope PD‐L1‐siRNA‐Based Nanovaccine: The Next‐Gen COVID‐19 Immunotherapy
title_fullStr Intranasal Multiepitope PD‐L1‐siRNA‐Based Nanovaccine: The Next‐Gen COVID‐19 Immunotherapy
title_full_unstemmed Intranasal Multiepitope PD‐L1‐siRNA‐Based Nanovaccine: The Next‐Gen COVID‐19 Immunotherapy
title_short Intranasal Multiepitope PD‐L1‐siRNA‐Based Nanovaccine: The Next‐Gen COVID‐19 Immunotherapy
title_sort intranasal multiepitope pd l1 sirna based nanovaccine the next gen covid 19 immunotherapy
topic Dendritic cells
Intranasal
MHC class I and MHC class II peptides
Nanovaccines
PD‐1/PD‐L1 immune checkpoints
SARS‐CoV‐2
url https://doi.org/10.1002/advs.202404159
work_keys_str_mv AT ritacacurcio intranasalmultiepitopepdl1sirnabasednanovaccinethenextgencovid19immunotherapy
AT ronkleiner intranasalmultiepitopepdl1sirnabasednanovaccinethenextgencovid19immunotherapy
AT daniellavaskovichkoubi intranasalmultiepitopepdl1sirnabasednanovaccinethenextgencovid19immunotherapy
AT barbaracarreira intranasalmultiepitopepdl1sirnabasednanovaccinethenextgencovid19immunotherapy
AT yulialiubomirski intranasalmultiepitopepdl1sirnabasednanovaccinethenextgencovid19immunotherapy
AT carolinapalma intranasalmultiepitopepdl1sirnabasednanovaccinethenextgencovid19immunotherapy
AT advayeheskel intranasalmultiepitopepdl1sirnabasednanovaccinethenextgencovid19immunotherapy
AT eilamyeini intranasalmultiepitopepdl1sirnabasednanovaccinethenextgencovid19immunotherapy
AT anasviana intranasalmultiepitopepdl1sirnabasednanovaccinethenextgencovid19immunotherapy
AT veraferreira intranasalmultiepitopepdl1sirnabasednanovaccinethenextgencovid19immunotherapy
AT carlosaraujo intranasalmultiepitopepdl1sirnabasednanovaccinethenextgencovid19immunotherapy
AT michaelmor intranasalmultiepitopepdl1sirnabasednanovaccinethenextgencovid19immunotherapy
AT nataliatfreund intranasalmultiepitopepdl1sirnabasednanovaccinethenextgencovid19immunotherapy
AT eranbacharach intranasalmultiepitopepdl1sirnabasednanovaccinethenextgencovid19immunotherapy
AT joaogoncalves intranasalmultiepitopepdl1sirnabasednanovaccinethenextgencovid19immunotherapy
AT miratoisterachituv intranasalmultiepitopepdl1sirnabasednanovaccinethenextgencovid19immunotherapy
AT manonfabregue intranasalmultiepitopepdl1sirnabasednanovaccinethenextgencovid19immunotherapy
AT solenematthieu intranasalmultiepitopepdl1sirnabasednanovaccinethenextgencovid19immunotherapy
AT capucineguerry intranasalmultiepitopepdl1sirnabasednanovaccinethenextgencovid19immunotherapy
AT anazarubica intranasalmultiepitopepdl1sirnabasednanovaccinethenextgencovid19immunotherapy
AT saritavielronen intranasalmultiepitopepdl1sirnabasednanovaccinethenextgencovid19immunotherapy
AT helenafflorindo intranasalmultiepitopepdl1sirnabasednanovaccinethenextgencovid19immunotherapy
AT ronitsatchifainaro intranasalmultiepitopepdl1sirnabasednanovaccinethenextgencovid19immunotherapy