Minimal Wave Speed in an Integrodifference System of Predator-Prey Type
This article studies the minimal wave speed of traveling wave solutions in an integrodifference predator-prey system that does not have the comparison principle. By constructing generalized upper and lower solutions and utilizing the theory of asymptotic spreading, we show the minimal wave speed of...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2020-01-01
|
Series: | Discrete Dynamics in Nature and Society |
Online Access: | http://dx.doi.org/10.1155/2020/2704620 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article studies the minimal wave speed of traveling wave solutions in an integrodifference predator-prey system that does not have the comparison principle. By constructing generalized upper and lower solutions and utilizing the theory of asymptotic spreading, we show the minimal wave speed of traveling wave solutions modeling the invasion process of two species by presenting the existence and nonexistence of nonconstant traveling wave solutions with any wave speeds. |
---|---|
ISSN: | 1026-0226 1607-887X |