Risk Assessment of Prefabricated Building Projects Based on the G1-CRITIC Method and Cloud Model: A Case Study from China
To enhance the ability to identify and analyze the construction safety risks of prefabricated building projects, this paper explores the risk factors affecting the construction safety of prefabricated buildings from the perspective of the construction stage. Based on the WSR theory, this paper ident...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-08-01
|
| Series: | Buildings |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2075-5309/15/15/2787 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | To enhance the ability to identify and analyze the construction safety risks of prefabricated building projects, this paper explores the risk factors affecting the construction safety of prefabricated buildings from the perspective of the construction stage. Based on the WSR theory, this paper identifies risk-influencing factors from five dimensions: personnel, materials, management, technology, and environment, and constructs a safety risk assessment index system. This paper establishes a risk assessment model based on the G1-CRITIC method and cloud model. Firstly, it quantitatively analyzes the weights of the risk indicators for prefabricated building construction, and then evaluates the specific degree of impact of each indicator on the construction risk of this type of project. The research results show that the project is at the low-risk level, but there are still some potential risks in terms of material and technical factors, which require close attention and targeted management. The evaluation results obtained by applying this model are consistent with the current actual situation of prefabricated building construction, further demonstrating the applicability of this model. The risk assessment model proposed in this paper, by focusing on a specific type of risk, comprehensively incorporates the fuzziness and randomness of risk factors, thereby more effectively capturing the dynamic characteristics of risk evolution. This model can effectively evaluate the level of safety risk management and plays a positive role in reducing the incidence of engineering accidents. Furthermore, it also provides practical experience that can be drawn upon by risk managers of similar projects which holds significant theoretical value and practical guiding significance. |
|---|---|
| ISSN: | 2075-5309 |