Quantum analytic Langlands correspondence

The analytic Langlands correspondence describes the solution to the spectral problem for the quantised Hitchin Hamiltonians. It is related to the S-duality of $\mathcal{N}=4$ super Yang-Mills theory. We propose a one-parameter deformation of the Analytic Langlands Correspondence, and discuss its rel...

Full description

Saved in:
Bibliographic Details
Main Author: Davide Gaiotto, Jörg Teschner
Format: Article
Language:English
Published: SciPost 2025-04-01
Series:SciPost Physics
Online Access:https://scipost.org/SciPostPhys.18.4.144
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849310682331217920
author Davide Gaiotto, Jörg Teschner
author_facet Davide Gaiotto, Jörg Teschner
author_sort Davide Gaiotto, Jörg Teschner
collection DOAJ
description The analytic Langlands correspondence describes the solution to the spectral problem for the quantised Hitchin Hamiltonians. It is related to the S-duality of $\mathcal{N}=4$ super Yang-Mills theory. We propose a one-parameter deformation of the Analytic Langlands Correspondence, and discuss its relations to quantum field theory. The partition functions of the $H_3^+$ WZNW model are interpreted as the wave-functions of a spherical vector in the quantisation of complex Chern-Simons theory. Verlinde line operators generate a representation of two copies of the quantised skein algebra on generalised partition functions. We conjecture that this action generates a basis for the underlying Hilbert space, and explain in which sense the resulting quantum theory represents a deformation of the Analytic Langlands Correspondence.
format Article
id doaj-art-b5366d908eae48cfaabdefba7dab5599
institution Kabale University
issn 2542-4653
language English
publishDate 2025-04-01
publisher SciPost
record_format Article
series SciPost Physics
spelling doaj-art-b5366d908eae48cfaabdefba7dab55992025-08-20T03:53:39ZengSciPostSciPost Physics2542-46532025-04-0118414410.21468/SciPostPhys.18.4.144Quantum analytic Langlands correspondenceDavide Gaiotto, Jörg TeschnerThe analytic Langlands correspondence describes the solution to the spectral problem for the quantised Hitchin Hamiltonians. It is related to the S-duality of $\mathcal{N}=4$ super Yang-Mills theory. We propose a one-parameter deformation of the Analytic Langlands Correspondence, and discuss its relations to quantum field theory. The partition functions of the $H_3^+$ WZNW model are interpreted as the wave-functions of a spherical vector in the quantisation of complex Chern-Simons theory. Verlinde line operators generate a representation of two copies of the quantised skein algebra on generalised partition functions. We conjecture that this action generates a basis for the underlying Hilbert space, and explain in which sense the resulting quantum theory represents a deformation of the Analytic Langlands Correspondence.https://scipost.org/SciPostPhys.18.4.144
spellingShingle Davide Gaiotto, Jörg Teschner
Quantum analytic Langlands correspondence
SciPost Physics
title Quantum analytic Langlands correspondence
title_full Quantum analytic Langlands correspondence
title_fullStr Quantum analytic Langlands correspondence
title_full_unstemmed Quantum analytic Langlands correspondence
title_short Quantum analytic Langlands correspondence
title_sort quantum analytic langlands correspondence
url https://scipost.org/SciPostPhys.18.4.144
work_keys_str_mv AT davidegaiottojorgteschner quantumanalyticlanglandscorrespondence