Membrane Charge Effects on Solute Transport in Nanofiltration: Experiments and Molecular Dynamics Simulations

Polyamide membranes, such as nanofiltration (NF) membranes, are widely used for water purification. However, the mechanisms of solute transport and solute rejection due to solute charge interactions with the membrane remain unclear at the molecular level. Here, we use molecular dynamics simulations...

Full description

Saved in:
Bibliographic Details
Main Authors: Suwei Liu, Zihao Foo, John H. Lienhard, Sinan Keten, Richard M. Lueptow
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Membranes
Subjects:
Online Access:https://www.mdpi.com/2077-0375/15/6/184
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849705049125552128
author Suwei Liu
Zihao Foo
John H. Lienhard
Sinan Keten
Richard M. Lueptow
author_facet Suwei Liu
Zihao Foo
John H. Lienhard
Sinan Keten
Richard M. Lueptow
author_sort Suwei Liu
collection DOAJ
description Polyamide membranes, such as nanofiltration (NF) membranes, are widely used for water purification. However, the mechanisms of solute transport and solute rejection due to solute charge interactions with the membrane remain unclear at the molecular level. Here, we use molecular dynamics simulations to examine the transport of single-solute feeds through charged nanofiltration membranes with different membrane charge concentrations of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>COO</mi><mo>−</mo></msup></mrow></semantics></math></inline-formula> and NH<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mmultiscripts><mspace width="-0.166667em"></mspace><none></none><mo>+</mo><mprescripts></mprescripts><mn>2</mn><none></none></mmultiscripts></mrow></semantics></math></inline-formula> resulting from the deprotonation or protonation of polymeric end groups according to the pH level that the membrane experiences. The results show that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>Na</mi><mo>+</mo></msup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>Cl</mi><mo>−</mo></msup></mrow></semantics></math></inline-formula> solute ions are better rejected when the membrane has a higher concentration of negatively charged groups, corresponding to a higher pH, whereas <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>CaCl</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula> is well rejected at all pH levels studied. These results are consistent with those of experiments performed at the same pH conditions as the simulation setup. Moreover, solute transport behavior depends on the membrane functional group distribution. When <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>COO</mi><mo>−</mo></msup></mrow></semantics></math></inline-formula> functional groups are concentrated at membrane feed surface, ion permeation into the membrane is reduced. Counter-ions tend to associate with charged functional groups while co-ions seem to pass by the charged groups more easily. In addition, steric effects play a role when ions of opposite charge cluster in pores of the membrane. This study reveals solute transport and rejection mechanisms related to membrane charge and provides insights into how membranes might be designed to achieve specific desired solute rejection.
format Article
id doaj-art-b515700a133146269ccb4ff3deefa6a1
institution DOAJ
issn 2077-0375
language English
publishDate 2025-06-01
publisher MDPI AG
record_format Article
series Membranes
spelling doaj-art-b515700a133146269ccb4ff3deefa6a12025-08-20T03:16:34ZengMDPI AGMembranes2077-03752025-06-0115618410.3390/membranes15060184Membrane Charge Effects on Solute Transport in Nanofiltration: Experiments and Molecular Dynamics SimulationsSuwei Liu0Zihao Foo1John H. Lienhard2Sinan Keten3Richard M. Lueptow4Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USADepartment of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USADepartment of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USADepartment of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USADepartment of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USAPolyamide membranes, such as nanofiltration (NF) membranes, are widely used for water purification. However, the mechanisms of solute transport and solute rejection due to solute charge interactions with the membrane remain unclear at the molecular level. Here, we use molecular dynamics simulations to examine the transport of single-solute feeds through charged nanofiltration membranes with different membrane charge concentrations of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>COO</mi><mo>−</mo></msup></mrow></semantics></math></inline-formula> and NH<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mmultiscripts><mspace width="-0.166667em"></mspace><none></none><mo>+</mo><mprescripts></mprescripts><mn>2</mn><none></none></mmultiscripts></mrow></semantics></math></inline-formula> resulting from the deprotonation or protonation of polymeric end groups according to the pH level that the membrane experiences. The results show that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>Na</mi><mo>+</mo></msup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>Cl</mi><mo>−</mo></msup></mrow></semantics></math></inline-formula> solute ions are better rejected when the membrane has a higher concentration of negatively charged groups, corresponding to a higher pH, whereas <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>CaCl</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula> is well rejected at all pH levels studied. These results are consistent with those of experiments performed at the same pH conditions as the simulation setup. Moreover, solute transport behavior depends on the membrane functional group distribution. When <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>COO</mi><mo>−</mo></msup></mrow></semantics></math></inline-formula> functional groups are concentrated at membrane feed surface, ion permeation into the membrane is reduced. Counter-ions tend to associate with charged functional groups while co-ions seem to pass by the charged groups more easily. In addition, steric effects play a role when ions of opposite charge cluster in pores of the membrane. This study reveals solute transport and rejection mechanisms related to membrane charge and provides insights into how membranes might be designed to achieve specific desired solute rejection.https://www.mdpi.com/2077-0375/15/6/184molecular dynamicssolute transportwater filtrationnanofiltration
spellingShingle Suwei Liu
Zihao Foo
John H. Lienhard
Sinan Keten
Richard M. Lueptow
Membrane Charge Effects on Solute Transport in Nanofiltration: Experiments and Molecular Dynamics Simulations
Membranes
molecular dynamics
solute transport
water filtration
nanofiltration
title Membrane Charge Effects on Solute Transport in Nanofiltration: Experiments and Molecular Dynamics Simulations
title_full Membrane Charge Effects on Solute Transport in Nanofiltration: Experiments and Molecular Dynamics Simulations
title_fullStr Membrane Charge Effects on Solute Transport in Nanofiltration: Experiments and Molecular Dynamics Simulations
title_full_unstemmed Membrane Charge Effects on Solute Transport in Nanofiltration: Experiments and Molecular Dynamics Simulations
title_short Membrane Charge Effects on Solute Transport in Nanofiltration: Experiments and Molecular Dynamics Simulations
title_sort membrane charge effects on solute transport in nanofiltration experiments and molecular dynamics simulations
topic molecular dynamics
solute transport
water filtration
nanofiltration
url https://www.mdpi.com/2077-0375/15/6/184
work_keys_str_mv AT suweiliu membranechargeeffectsonsolutetransportinnanofiltrationexperimentsandmoleculardynamicssimulations
AT zihaofoo membranechargeeffectsonsolutetransportinnanofiltrationexperimentsandmoleculardynamicssimulations
AT johnhlienhard membranechargeeffectsonsolutetransportinnanofiltrationexperimentsandmoleculardynamicssimulations
AT sinanketen membranechargeeffectsonsolutetransportinnanofiltrationexperimentsandmoleculardynamicssimulations
AT richardmlueptow membranechargeeffectsonsolutetransportinnanofiltrationexperimentsandmoleculardynamicssimulations