Collective chemo-mechanical oscillations and cluster waves in communicating colloids
Abstract Communication and feedback are crucial for the self-organization and the emergent viscoelastic behavior of life-like soft matter systems. However, the specific effects of communication between the individual components on their properties, interactions, and collective dynamics are not fully...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-02-01
|
| Series: | Communications Physics |
| Online Access: | https://doi.org/10.1038/s42005-025-01983-9 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Communication and feedback are crucial for the self-organization and the emergent viscoelastic behavior of life-like soft matter systems. However, the specific effects of communication between the individual components on their properties, interactions, and collective dynamics are not fully understood. Here, we report on two-dimensional Brownian dynamics simulations of catalytically active, non-motile hydrogel colloids with explicit resolution of chemical signaling clouds and chemo-mechanical feedback through a size-dependent permeability for the fuel. In particular, we investigate how their spatiotemporal structure and dynamical behavior depend on the communication magnitude and the colloid density. We discover a diverse range of nonequilibrium structures and active phases, including transitions from uncorrelated to synchronized oscillations and the emergence of elastic cluster waves for increasing chemo-mechanical coupling. Our findings highlight microscopic physical principles behind communication-driven cooperativity and could inform the design of active soft matter systems with adaptive functionalities. |
|---|---|
| ISSN: | 2399-3650 |