Integrable fishnet circuits and Brownian solitons
We introduce classical many-body dynamics on a one-dimensional lattice comprising local two-body maps arranged on discrete space-time mesh that serve as discretizations of Hamiltonian dynamics with arbitrarily time-varying coupling constants. Time evolution is generated by passing an auxiliary degre...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
SciPost
2025-07-01
|
| Series: | SciPost Physics |
| Online Access: | https://scipost.org/SciPostPhys.19.1.027 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849317247027249152 |
|---|---|
| author | Žiga Krajnik, Enej Ilievski, Tomaž Prosen, Benjamin J. A. Héry, Vincent Pasquier |
| author_facet | Žiga Krajnik, Enej Ilievski, Tomaž Prosen, Benjamin J. A. Héry, Vincent Pasquier |
| author_sort | Žiga Krajnik, Enej Ilievski, Tomaž Prosen, Benjamin J. A. Héry, Vincent Pasquier |
| collection | DOAJ |
| description | We introduce classical many-body dynamics on a one-dimensional lattice comprising local two-body maps arranged on discrete space-time mesh that serve as discretizations of Hamiltonian dynamics with arbitrarily time-varying coupling constants. Time evolution is generated by passing an auxiliary degree of freedom along the lattice, resulting in a 'fishnet' circuit structure. We construct integrable circuits consisting of Yang-Baxter maps and demonstrate their general properties, using the Toda and anisotropic Landau-Lifschitz models as examples. Upon stochastically rescaling time, the dynamics is dominated by fluctuations and we observe solitons undergoing Brownian motion. |
| format | Article |
| id | doaj-art-b4fd5f6a550f467f9f17eebe665fb0bf |
| institution | Kabale University |
| issn | 2542-4653 |
| language | English |
| publishDate | 2025-07-01 |
| publisher | SciPost |
| record_format | Article |
| series | SciPost Physics |
| spelling | doaj-art-b4fd5f6a550f467f9f17eebe665fb0bf2025-08-20T03:51:18ZengSciPostSciPost Physics2542-46532025-07-0119102710.21468/SciPostPhys.19.1.027Integrable fishnet circuits and Brownian solitonsŽiga Krajnik, Enej Ilievski, Tomaž Prosen, Benjamin J. A. Héry, Vincent PasquierWe introduce classical many-body dynamics on a one-dimensional lattice comprising local two-body maps arranged on discrete space-time mesh that serve as discretizations of Hamiltonian dynamics with arbitrarily time-varying coupling constants. Time evolution is generated by passing an auxiliary degree of freedom along the lattice, resulting in a 'fishnet' circuit structure. We construct integrable circuits consisting of Yang-Baxter maps and demonstrate their general properties, using the Toda and anisotropic Landau-Lifschitz models as examples. Upon stochastically rescaling time, the dynamics is dominated by fluctuations and we observe solitons undergoing Brownian motion.https://scipost.org/SciPostPhys.19.1.027 |
| spellingShingle | Žiga Krajnik, Enej Ilievski, Tomaž Prosen, Benjamin J. A. Héry, Vincent Pasquier Integrable fishnet circuits and Brownian solitons SciPost Physics |
| title | Integrable fishnet circuits and Brownian solitons |
| title_full | Integrable fishnet circuits and Brownian solitons |
| title_fullStr | Integrable fishnet circuits and Brownian solitons |
| title_full_unstemmed | Integrable fishnet circuits and Brownian solitons |
| title_short | Integrable fishnet circuits and Brownian solitons |
| title_sort | integrable fishnet circuits and brownian solitons |
| url | https://scipost.org/SciPostPhys.19.1.027 |
| work_keys_str_mv | AT zigakrajnikenejilievskitomazprosenbenjaminjaheryvincentpasquier integrablefishnetcircuitsandbrowniansolitons |