Integrable fishnet circuits and Brownian solitons

We introduce classical many-body dynamics on a one-dimensional lattice comprising local two-body maps arranged on discrete space-time mesh that serve as discretizations of Hamiltonian dynamics with arbitrarily time-varying coupling constants. Time evolution is generated by passing an auxiliary degre...

Full description

Saved in:
Bibliographic Details
Main Author: Žiga Krajnik, Enej Ilievski, Tomaž Prosen, Benjamin J. A. Héry, Vincent Pasquier
Format: Article
Language:English
Published: SciPost 2025-07-01
Series:SciPost Physics
Online Access:https://scipost.org/SciPostPhys.19.1.027
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849317247027249152
author Žiga Krajnik, Enej Ilievski, Tomaž Prosen, Benjamin J. A. Héry, Vincent Pasquier
author_facet Žiga Krajnik, Enej Ilievski, Tomaž Prosen, Benjamin J. A. Héry, Vincent Pasquier
author_sort Žiga Krajnik, Enej Ilievski, Tomaž Prosen, Benjamin J. A. Héry, Vincent Pasquier
collection DOAJ
description We introduce classical many-body dynamics on a one-dimensional lattice comprising local two-body maps arranged on discrete space-time mesh that serve as discretizations of Hamiltonian dynamics with arbitrarily time-varying coupling constants. Time evolution is generated by passing an auxiliary degree of freedom along the lattice, resulting in a 'fishnet' circuit structure. We construct integrable circuits consisting of Yang-Baxter maps and demonstrate their general properties, using the Toda and anisotropic Landau-Lifschitz models as examples. Upon stochastically rescaling time, the dynamics is dominated by fluctuations and we observe solitons undergoing Brownian motion.
format Article
id doaj-art-b4fd5f6a550f467f9f17eebe665fb0bf
institution Kabale University
issn 2542-4653
language English
publishDate 2025-07-01
publisher SciPost
record_format Article
series SciPost Physics
spelling doaj-art-b4fd5f6a550f467f9f17eebe665fb0bf2025-08-20T03:51:18ZengSciPostSciPost Physics2542-46532025-07-0119102710.21468/SciPostPhys.19.1.027Integrable fishnet circuits and Brownian solitonsŽiga Krajnik, Enej Ilievski, Tomaž Prosen, Benjamin J. A. Héry, Vincent PasquierWe introduce classical many-body dynamics on a one-dimensional lattice comprising local two-body maps arranged on discrete space-time mesh that serve as discretizations of Hamiltonian dynamics with arbitrarily time-varying coupling constants. Time evolution is generated by passing an auxiliary degree of freedom along the lattice, resulting in a 'fishnet' circuit structure. We construct integrable circuits consisting of Yang-Baxter maps and demonstrate their general properties, using the Toda and anisotropic Landau-Lifschitz models as examples. Upon stochastically rescaling time, the dynamics is dominated by fluctuations and we observe solitons undergoing Brownian motion.https://scipost.org/SciPostPhys.19.1.027
spellingShingle Žiga Krajnik, Enej Ilievski, Tomaž Prosen, Benjamin J. A. Héry, Vincent Pasquier
Integrable fishnet circuits and Brownian solitons
SciPost Physics
title Integrable fishnet circuits and Brownian solitons
title_full Integrable fishnet circuits and Brownian solitons
title_fullStr Integrable fishnet circuits and Brownian solitons
title_full_unstemmed Integrable fishnet circuits and Brownian solitons
title_short Integrable fishnet circuits and Brownian solitons
title_sort integrable fishnet circuits and brownian solitons
url https://scipost.org/SciPostPhys.19.1.027
work_keys_str_mv AT zigakrajnikenejilievskitomazprosenbenjaminjaheryvincentpasquier integrablefishnetcircuitsandbrowniansolitons