Bessel Picosecond Laser Cutting Glass-Ceramics: Optimization of Processing Point Spacing, Incident Power, and Burst Mode
Recent advances in glass-ceramics research have expanded their applications in astronomy, optoelectronics, and laser systems. However, precision cutting technology remains challenging. This study optimized picosecond laser processing parameters for 600 nm-thick glass-ceramics, revealing critical inf...
Saved in:
| Main Authors: | , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Applied Sciences |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2076-3417/15/11/6172 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Recent advances in glass-ceramics research have expanded their applications in astronomy, optoelectronics, and laser systems. However, precision cutting technology remains challenging. This study optimized picosecond laser processing parameters for 600 nm-thick glass-ceramics, revealing critical influences of point spacing, laser energy, and pulse number. Atomic force microscopy showed that 1 µm processing spacing enabled uniform ablation grooves with optimal roughness. Two-pulse configurations achieved the most consistent surface improvement. At 12.5 W incident power, samples exhibited minimized average roughness (219 nm) with localized values reaching 208 nm, alongside 1.2 N breaking stress. |
|---|---|
| ISSN: | 2076-3417 |