An ultrastretchable seamlessly integrated contactless charging microsystem towards skin-attachable wireless microelectronics
Abstract For electronics to be wearable, contactless charging and overall deformability are necessary pre-conditions. However, the current heterogeneous integration based on different active materials and separate manufacturing often leads to mechanical mismatch. Here, we report an ultrastretchable...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-02-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-025-56881-z |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract For electronics to be wearable, contactless charging and overall deformability are necessary pre-conditions. However, the current heterogeneous integration based on different active materials and separate manufacturing often leads to mechanical mismatch. Here, we report an ultrastretchable all-in-one integrated MXene-based microsystem comprising wireless coils, micro-supercapacitors (MSCs) and strain sensors. The seamless configuration without any connecting interface dramatically improves the structural integrity of the microsystem, and a pre-crumpled structure endows it with superior stretchability. Attributed to these, our MSCs can be wirelessly charged in ~20 s under various types of deformation and are capable of powering strain sensors, responding rapidly to body motion signals. Moreover, the MSCs display a high specific capacitance of 76.82 F cm–3, and superb mechanical stability with 98.5% capacitance retention after biaxial stretching 1000 cycles from 0% to 500% areal strain. Therefore, this work sheds new insights into design and implementation of skin-attachable wireless microelectronics. |
|---|---|
| ISSN: | 2041-1723 |