A "candidate-interactome" aggregate analysis of genome-wide association data in multiple sclerosis.
Though difficult, the study of gene-environment interactions in multifactorial diseases is crucial for interpreting the relevance of non-heritable factors and prevents from overlooking genetic associations with small but measurable effects. We propose a "candidate interactome" (i.e. a grou...
Saved in:
| Main Authors: | , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Public Library of Science (PLoS)
2013-01-01
|
| Series: | PLoS ONE |
| Online Access: | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0063300&type=printable |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849434079906234368 |
|---|---|
| author | Rosella Mechelli Renato Umeton Claudia Policano Viviana Annibali Giulia Coarelli Vito A G Ricigliano Danila Vittori Arianna Fornasiero Maria Chiara Buscarinu International Multiple Sclerosis Genetics Consortium Wellcome Trust Case Control Consortium,2 Silvia Romano Marco Salvetti Giovanni Ristori |
| author_facet | Rosella Mechelli Renato Umeton Claudia Policano Viviana Annibali Giulia Coarelli Vito A G Ricigliano Danila Vittori Arianna Fornasiero Maria Chiara Buscarinu International Multiple Sclerosis Genetics Consortium Wellcome Trust Case Control Consortium,2 Silvia Romano Marco Salvetti Giovanni Ristori |
| author_sort | Rosella Mechelli |
| collection | DOAJ |
| description | Though difficult, the study of gene-environment interactions in multifactorial diseases is crucial for interpreting the relevance of non-heritable factors and prevents from overlooking genetic associations with small but measurable effects. We propose a "candidate interactome" (i.e. a group of genes whose products are known to physically interact with environmental factors that may be relevant for disease pathogenesis) analysis of genome-wide association data in multiple sclerosis. We looked for statistical enrichment of associations among interactomes that, at the current state of knowledge, may be representative of gene-environment interactions of potential, uncertain or unlikely relevance for multiple sclerosis pathogenesis: Epstein-Barr virus, human immunodeficiency virus, hepatitis B virus, hepatitis C virus, cytomegalovirus, HHV8-Kaposi sarcoma, H1N1-influenza, JC virus, human innate immunity interactome for type I interferon, autoimmune regulator, vitamin D receptor, aryl hydrocarbon receptor and a panel of proteins targeted by 70 innate immune-modulating viral open reading frames from 30 viral species. Interactomes were either obtained from the literature or were manually curated. The P values of all single nucleotide polymorphism mapping to a given interactome were obtained from the last genome-wide association study of the International Multiple Sclerosis Genetics Consortium & the Wellcome Trust Case Control Consortium, 2. The interaction between genotype and Epstein Barr virus emerges as relevant for multiple sclerosis etiology. However, in line with recent data on the coexistence of common and unique strategies used by viruses to perturb the human molecular system, also other viruses have a similar potential, though probably less relevant in epidemiological terms. |
| format | Article |
| id | doaj-art-b4d7db5e189c4ff185f998145fd06739 |
| institution | Kabale University |
| issn | 1932-6203 |
| language | English |
| publishDate | 2013-01-01 |
| publisher | Public Library of Science (PLoS) |
| record_format | Article |
| series | PLoS ONE |
| spelling | doaj-art-b4d7db5e189c4ff185f998145fd067392025-08-20T03:26:48ZengPublic Library of Science (PLoS)PLoS ONE1932-62032013-01-0185e6330010.1371/journal.pone.0063300A "candidate-interactome" aggregate analysis of genome-wide association data in multiple sclerosis.Rosella MechelliRenato UmetonClaudia PolicanoViviana AnnibaliGiulia CoarelliVito A G RiciglianoDanila VittoriArianna FornasieroMaria Chiara BuscarinuInternational Multiple Sclerosis Genetics ConsortiumWellcome Trust Case Control Consortium,2Silvia RomanoMarco SalvettiGiovanni RistoriThough difficult, the study of gene-environment interactions in multifactorial diseases is crucial for interpreting the relevance of non-heritable factors and prevents from overlooking genetic associations with small but measurable effects. We propose a "candidate interactome" (i.e. a group of genes whose products are known to physically interact with environmental factors that may be relevant for disease pathogenesis) analysis of genome-wide association data in multiple sclerosis. We looked for statistical enrichment of associations among interactomes that, at the current state of knowledge, may be representative of gene-environment interactions of potential, uncertain or unlikely relevance for multiple sclerosis pathogenesis: Epstein-Barr virus, human immunodeficiency virus, hepatitis B virus, hepatitis C virus, cytomegalovirus, HHV8-Kaposi sarcoma, H1N1-influenza, JC virus, human innate immunity interactome for type I interferon, autoimmune regulator, vitamin D receptor, aryl hydrocarbon receptor and a panel of proteins targeted by 70 innate immune-modulating viral open reading frames from 30 viral species. Interactomes were either obtained from the literature or were manually curated. The P values of all single nucleotide polymorphism mapping to a given interactome were obtained from the last genome-wide association study of the International Multiple Sclerosis Genetics Consortium & the Wellcome Trust Case Control Consortium, 2. The interaction between genotype and Epstein Barr virus emerges as relevant for multiple sclerosis etiology. However, in line with recent data on the coexistence of common and unique strategies used by viruses to perturb the human molecular system, also other viruses have a similar potential, though probably less relevant in epidemiological terms.https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0063300&type=printable |
| spellingShingle | Rosella Mechelli Renato Umeton Claudia Policano Viviana Annibali Giulia Coarelli Vito A G Ricigliano Danila Vittori Arianna Fornasiero Maria Chiara Buscarinu International Multiple Sclerosis Genetics Consortium Wellcome Trust Case Control Consortium,2 Silvia Romano Marco Salvetti Giovanni Ristori A "candidate-interactome" aggregate analysis of genome-wide association data in multiple sclerosis. PLoS ONE |
| title | A "candidate-interactome" aggregate analysis of genome-wide association data in multiple sclerosis. |
| title_full | A "candidate-interactome" aggregate analysis of genome-wide association data in multiple sclerosis. |
| title_fullStr | A "candidate-interactome" aggregate analysis of genome-wide association data in multiple sclerosis. |
| title_full_unstemmed | A "candidate-interactome" aggregate analysis of genome-wide association data in multiple sclerosis. |
| title_short | A "candidate-interactome" aggregate analysis of genome-wide association data in multiple sclerosis. |
| title_sort | candidate interactome aggregate analysis of genome wide association data in multiple sclerosis |
| url | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0063300&type=printable |
| work_keys_str_mv | AT rosellamechelli acandidateinteractomeaggregateanalysisofgenomewideassociationdatainmultiplesclerosis AT renatoumeton acandidateinteractomeaggregateanalysisofgenomewideassociationdatainmultiplesclerosis AT claudiapolicano acandidateinteractomeaggregateanalysisofgenomewideassociationdatainmultiplesclerosis AT vivianaannibali acandidateinteractomeaggregateanalysisofgenomewideassociationdatainmultiplesclerosis AT giuliacoarelli acandidateinteractomeaggregateanalysisofgenomewideassociationdatainmultiplesclerosis AT vitoagricigliano acandidateinteractomeaggregateanalysisofgenomewideassociationdatainmultiplesclerosis AT danilavittori acandidateinteractomeaggregateanalysisofgenomewideassociationdatainmultiplesclerosis AT ariannafornasiero acandidateinteractomeaggregateanalysisofgenomewideassociationdatainmultiplesclerosis AT mariachiarabuscarinu acandidateinteractomeaggregateanalysisofgenomewideassociationdatainmultiplesclerosis AT internationalmultiplesclerosisgeneticsconsortium acandidateinteractomeaggregateanalysisofgenomewideassociationdatainmultiplesclerosis AT wellcometrustcasecontrolconsortium2 acandidateinteractomeaggregateanalysisofgenomewideassociationdatainmultiplesclerosis AT silviaromano acandidateinteractomeaggregateanalysisofgenomewideassociationdatainmultiplesclerosis AT marcosalvetti acandidateinteractomeaggregateanalysisofgenomewideassociationdatainmultiplesclerosis AT giovanniristori acandidateinteractomeaggregateanalysisofgenomewideassociationdatainmultiplesclerosis AT rosellamechelli candidateinteractomeaggregateanalysisofgenomewideassociationdatainmultiplesclerosis AT renatoumeton candidateinteractomeaggregateanalysisofgenomewideassociationdatainmultiplesclerosis AT claudiapolicano candidateinteractomeaggregateanalysisofgenomewideassociationdatainmultiplesclerosis AT vivianaannibali candidateinteractomeaggregateanalysisofgenomewideassociationdatainmultiplesclerosis AT giuliacoarelli candidateinteractomeaggregateanalysisofgenomewideassociationdatainmultiplesclerosis AT vitoagricigliano candidateinteractomeaggregateanalysisofgenomewideassociationdatainmultiplesclerosis AT danilavittori candidateinteractomeaggregateanalysisofgenomewideassociationdatainmultiplesclerosis AT ariannafornasiero candidateinteractomeaggregateanalysisofgenomewideassociationdatainmultiplesclerosis AT mariachiarabuscarinu candidateinteractomeaggregateanalysisofgenomewideassociationdatainmultiplesclerosis AT internationalmultiplesclerosisgeneticsconsortium candidateinteractomeaggregateanalysisofgenomewideassociationdatainmultiplesclerosis AT wellcometrustcasecontrolconsortium2 candidateinteractomeaggregateanalysisofgenomewideassociationdatainmultiplesclerosis AT silviaromano candidateinteractomeaggregateanalysisofgenomewideassociationdatainmultiplesclerosis AT marcosalvetti candidateinteractomeaggregateanalysisofgenomewideassociationdatainmultiplesclerosis AT giovanniristori candidateinteractomeaggregateanalysisofgenomewideassociationdatainmultiplesclerosis |