Positive Semi-Definite and Sum of Squares Biquadratic Polynomials

Hilbert proved in 1888 that a positive semi-definite (PSD) homogeneous quartic polynomial of three variables always can be expressed as the sum of squares (SOS) of three quadratic polynomials, and a psd homogeneous quartic polynomial of four variables may not be sos. Only after 87 years, in 1975, Ch...

Full description

Saved in:
Bibliographic Details
Main Authors: Chunfeng Cui, Liqun Qi, Yi Xu
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/14/2294
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849733112848711680
author Chunfeng Cui
Liqun Qi
Yi Xu
author_facet Chunfeng Cui
Liqun Qi
Yi Xu
author_sort Chunfeng Cui
collection DOAJ
description Hilbert proved in 1888 that a positive semi-definite (PSD) homogeneous quartic polynomial of three variables always can be expressed as the sum of squares (SOS) of three quadratic polynomials, and a psd homogeneous quartic polynomial of four variables may not be sos. Only after 87 years, in 1975, Choi gave the explicit expression of such a psd-not-sos (PNS) homogeneous quartic polynomial of four variables. An <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>×</mo><mi>n</mi></mrow></semantics></math></inline-formula> biquadratic polynomial is a homogeneous quartic polynomial of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>+</mo><mi>n</mi></mrow></semantics></math></inline-formula> variables. In this paper, we show that an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>×</mo><mi>n</mi></mrow></semantics></math></inline-formula> biquadratic polynomial can be expressed as a tripartite homogeneous quartic polynomial of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>+</mo><mi>n</mi><mo>−</mo><mn>1</mn></mrow></semantics></math></inline-formula> variables. Therefore, by Hilbert’s theorem, a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mo>×</mo><mn>2</mn></mrow></semantics></math></inline-formula> PSD biquadratic polynomial can be expressed as the sum of squares of three quadratic polynomials. This improves the result of Calderón in 1973, who proved that a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mo>×</mo><mn>2</mn></mrow></semantics></math></inline-formula> biquadratic polynomial can be expressed as the sum of squares of nine quadratic polynomials. Furthermore, we present a necessary and sufficient condition for an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>×</mo><mi>n</mi></mrow></semantics></math></inline-formula> psd biquadratic polynomial to be sos, and show that if such a polynomial is sos, then its sos rank is at most <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mi>n</mi></mrow></semantics></math></inline-formula>. Then we give a constructive proof of the sos form of a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mo>×</mo><mn>2</mn></mrow></semantics></math></inline-formula> psd biquadratic polynomial in three cases.
format Article
id doaj-art-b4a8154ff7cf4aeea6ea216b0c04afac
institution DOAJ
issn 2227-7390
language English
publishDate 2025-07-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-b4a8154ff7cf4aeea6ea216b0c04afac2025-08-20T03:08:06ZengMDPI AGMathematics2227-73902025-07-011314229410.3390/math13142294Positive Semi-Definite and Sum of Squares Biquadratic PolynomialsChunfeng Cui0Liqun Qi1Yi Xu2School of Mathematical Sciences, Beihang University, Beijing 100191, ChinaJiangsu Provincial Scientific Research Center of Applied Mathematics, Nanjing 211189, ChinaJiangsu Provincial Scientific Research Center of Applied Mathematics, Nanjing 211189, ChinaHilbert proved in 1888 that a positive semi-definite (PSD) homogeneous quartic polynomial of three variables always can be expressed as the sum of squares (SOS) of three quadratic polynomials, and a psd homogeneous quartic polynomial of four variables may not be sos. Only after 87 years, in 1975, Choi gave the explicit expression of such a psd-not-sos (PNS) homogeneous quartic polynomial of four variables. An <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>×</mo><mi>n</mi></mrow></semantics></math></inline-formula> biquadratic polynomial is a homogeneous quartic polynomial of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>+</mo><mi>n</mi></mrow></semantics></math></inline-formula> variables. In this paper, we show that an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>×</mo><mi>n</mi></mrow></semantics></math></inline-formula> biquadratic polynomial can be expressed as a tripartite homogeneous quartic polynomial of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>+</mo><mi>n</mi><mo>−</mo><mn>1</mn></mrow></semantics></math></inline-formula> variables. Therefore, by Hilbert’s theorem, a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mo>×</mo><mn>2</mn></mrow></semantics></math></inline-formula> PSD biquadratic polynomial can be expressed as the sum of squares of three quadratic polynomials. This improves the result of Calderón in 1973, who proved that a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mo>×</mo><mn>2</mn></mrow></semantics></math></inline-formula> biquadratic polynomial can be expressed as the sum of squares of nine quadratic polynomials. Furthermore, we present a necessary and sufficient condition for an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>×</mo><mi>n</mi></mrow></semantics></math></inline-formula> psd biquadratic polynomial to be sos, and show that if such a polynomial is sos, then its sos rank is at most <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mi>n</mi></mrow></semantics></math></inline-formula>. Then we give a constructive proof of the sos form of a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mo>×</mo><mn>2</mn></mrow></semantics></math></inline-formula> psd biquadratic polynomial in three cases.https://www.mdpi.com/2227-7390/13/14/2294biquadratic polynomialssum of squarespositive semi-definitenessbiquadratic polynomialstripartite quartic polynomials
spellingShingle Chunfeng Cui
Liqun Qi
Yi Xu
Positive Semi-Definite and Sum of Squares Biquadratic Polynomials
Mathematics
biquadratic polynomials
sum of squares
positive semi-definiteness
biquadratic polynomials
tripartite quartic polynomials
title Positive Semi-Definite and Sum of Squares Biquadratic Polynomials
title_full Positive Semi-Definite and Sum of Squares Biquadratic Polynomials
title_fullStr Positive Semi-Definite and Sum of Squares Biquadratic Polynomials
title_full_unstemmed Positive Semi-Definite and Sum of Squares Biquadratic Polynomials
title_short Positive Semi-Definite and Sum of Squares Biquadratic Polynomials
title_sort positive semi definite and sum of squares biquadratic polynomials
topic biquadratic polynomials
sum of squares
positive semi-definiteness
biquadratic polynomials
tripartite quartic polynomials
url https://www.mdpi.com/2227-7390/13/14/2294
work_keys_str_mv AT chunfengcui positivesemidefiniteandsumofsquaresbiquadraticpolynomials
AT liqunqi positivesemidefiniteandsumofsquaresbiquadraticpolynomials
AT yixu positivesemidefiniteandsumofsquaresbiquadraticpolynomials