Photochemistry Aspects of the Laser Pyrolysis Addressing the Preparation of Oxide Semiconductor Photocatalysts
The laser pyrolysis is a powerful and a versatile tool for the gas-phase synthesis of nanoparticles. In this paper, some fundamental and applicative characteristics of this technique are outlined and recent results obtained in the preparation of gamma iron oxide (γ-Fe2O3) and titania (TiO2) semicond...
Saved in:
Main Authors: | , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2008-01-01
|
Series: | International Journal of Photoenergy |
Online Access: | http://dx.doi.org/10.1155/2008/604181 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The laser pyrolysis is a powerful and a versatile tool for the gas-phase synthesis of nanoparticles. In this paper, some fundamental and applicative characteristics of this technique are outlined and recent results obtained in the preparation of gamma iron oxide (γ-Fe2O3) and titania (TiO2) semiconductor nanostructures are illustrated. Nanosized iron oxide particles (4 to 9 nm diameter values) have been directly synthesized by the laser-induced pyrolysis of a
mixture containing iron pentacarbonyl/air (as oxidizer)/ethylene (as sensitizer). Temperature-dependent Mossbauer spectroscopy shows that mainly maghemite is present in the sample obtained at
higher laser power. The use of selected Fe2O3 samples for the preparation of water-dispersed magnetic nanofluids is also discussed. TiO2 nanoparticles comprising a mixture of anatase and rutile phases were synthesized via the laser pyrolysis of TiCl4- (vapors) based gas-phase mixtures. High precursor concentration of the oxidizer was found to favor the prevalent anatase phase (about 90%) in the titania nanopowders. |
---|---|
ISSN: | 1110-662X 1687-529X |