Privacy-Preserving Clinical Decision Support for Emergency Triage Using LLMs: System Architecture and Real-World Evaluation

This study presents a next-generation clinical decision-support architecture for Clinical Decision Support Systems (CDSS) focused on emergency triage. By integrating Large Language Models (LLMs), Federated Learning (FL), and low-latency streaming analytics within a modular, privacy-preserving framew...

Full description

Saved in:
Bibliographic Details
Main Authors: Alper Karamanlıoğlu, Berkan Demirel, Onur Tural, Osman Tufan Doğan, Ferda Nur Alpaslan
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/15/8412
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study presents a next-generation clinical decision-support architecture for Clinical Decision Support Systems (CDSS) focused on emergency triage. By integrating Large Language Models (LLMs), Federated Learning (FL), and low-latency streaming analytics within a modular, privacy-preserving framework, the system addresses key deployment challenges in high-stakes clinical settings. Unlike traditional models, the architecture processes both structured (vitals, labs) and unstructured (clinical notes) data to enable context-aware reasoning with clinically acceptable latency at the point of care. It leverages big data infrastructure for large-scale EHR management and incorporates digital twin concepts for live patient monitoring. Federated training allows institutions to collaboratively improve models without sharing raw data, ensuring compliance with GDPR/HIPAA, and FAIR principles. Privacy is further protected through differential privacy, secure aggregation, and inference isolation. We evaluate the system through two studies: (1) a benchmark of 750+ USMLE-style questions validating the medical reasoning of fine-tuned LLMs; and (2) a real-world case study (<i>n</i> = 132, 75.8% first-pass agreement) using de-identified MIMIC-III data to assess triage accuracy and responsiveness. The system demonstrated clinically acceptable latency and promising alignment with expert judgment on reviewed cases. The infectious disease triage case demonstrates low-latency recognition of sepsis-like presentations in the ED. This work offers a scalable, audit-compliant, and clinician-validated blueprint for CDSS, enabling low-latency triage and extensibility across specialties.
ISSN:2076-3417