Microbe-assisted fabrication of circularly polarized luminescent bacterial cellulosic hybrids

Abstract The fabrications of circularly polarized luminescent (CPL) material are mainly based on the chemical and physical strategies. Controlled biosynthesis of CPL-active materials is beset with difficulties due to the lack of bioactive luminescent precursors and bio-reactors. Enlighted by microbe...

Full description

Saved in:
Bibliographic Details
Main Authors: Yongjie Sun, Dan Zhang, Zhiqiang Dong, Jinxiao Lyu, Chunfei Wang, Jun Gong, Koon Ho Wong, Changfeng Wu, Xuanjun Zhang
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-025-56253-7
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract The fabrications of circularly polarized luminescent (CPL) material are mainly based on the chemical and physical strategies. Controlled biosynthesis of CPL-active materials is beset with difficulties due to the lack of bioactive luminescent precursors and bio-reactors. Enlighted by microbe-assisted asymmetric biosynthesis, herein, we show the in situ bacterial fermentation of Komagataeibacter sucrofermentants to fabricate a series of bacterial cellulosic biofilms with CPL of green, orange, red, and near-infrared colors. This process can trigger CPL emission for CPL-silent glycosylated luminophores and amplify the glum of weak CPL-active luminophores up to a 10−2 scale. To confirm glycosidic bonds formation during the bacterial copolymerization process, we develop an assay utilizing the cellulase-catalyzed biodegradation of BC hybrids. More importantly, we achieve the information encryption and Fe3+ dual-channel detection based on hybrid bacterial cellulosic biofilms. Therefore, this study not only provides another vision for CPL materials preparation but also broadens the application of bacterial cellulosic hybrids.
ISSN:2041-1723