Silicon-Organic Hybrid Modulators Based on a Coupled One-Dimensional Photonic Crystal Slot Resonator Waveguide

High-speed and energy-efficient optical interconnects critically rely on electro-optical (EO) modulators, whose performance metrics struggle to meet the exponentially increasing demands of the near future. Silicon-organic hybrid (SOH) modulators present a promising solution due to the favorable elec...

Full description

Saved in:
Bibliographic Details
Main Authors: Yanmei Li, Likang Yan, Yang Feng, Jinzhao Wang, Rui Li, Weiming Yao, Yong Yao, Xiaochuan Xu
Format: Article
Language:English
Published: IEEE 2025-01-01
Series:IEEE Photonics Journal
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10964245/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:High-speed and energy-efficient optical interconnects critically rely on electro-optical (EO) modulators, whose performance metrics struggle to meet the exponentially increasing demands of the near future. Silicon-organic hybrid (SOH) modulators present a promising solution due to the favorable electro-optic coefficients and fast response times of EO organic materials. However, the waveguide&#x0027;s nature limits the effective interaction between photons and EO materials. Although this interaction can be enhanced by utilizing advanced structures such as slot waveguides and slow-light techniques, new challenges arise, including strong dispersion that compromises bandwidth. In this paper, we propose a novel low-dispersion, slow-light waveguide structure based on a coupled one-dimensional photonic crystal slot resonator waveguide (coupled 1D PC SROW). By cascading multiple coupled resonators, the structure creates a low-dispersion, slow-light region within the photonic bandgap. Combining the strong optical field confinement of the slot with the slow-light enhancement in the time domain, modulation efficiency, quantified by <italic>V<sub>&#x03C0;</sub>L</italic>, can be significantly improved. As an example, we demonstrate that a <italic>V<sub>&#x03C0;</sub>L</italic> of 0.57 Vmm can be achieved for a low-dispersion wavelength range of 2.55 nm. The improvement in modulation efficiency allows for a reduction in the phase shifter length to 119 &#x03BC;m, overcoming the bandwidth limitations imposed by spatial walk-off between the electrical and optical waves and enabling a bandwidth of 108 GHz, a value challenging for conventional approaches. This study presents a viable alternative for realizing compact, ultra-broadband, and energy-efficient optical modulators.
ISSN:1943-0655