Highly efficient scavenging of nitrophenol, arsenic (V), copper (II), dibenzothiphene, and carbazole by nanoporous silica/carbon adsorbents for remediation of oil and water pollutants
At present study, the removal of p-nitrophenol (PNP) by a newly designed mesoporous organocarbon, monolayers of ß-cyclodextrine (CD) on oxidzed ordered nanoporous carbon (OX-ONC) via 1,4-phenylene diisocyanate (PDI) linking denoted as CD-ONC was optimized. Furthermore, Au-doped mesoporous carbon CMK...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Iranian Environmental Mutagen Society
2024-05-01
|
Series: | Journal of Water and Environmental Nanotechnology |
Subjects: | |
Online Access: | https://www.jwent.net/article_713101_b8a4ccb75fbb4345fd4f474dc96352ed.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1841545224366587904 |
---|---|
author | Ghasem Zolfaghari |
author_facet | Ghasem Zolfaghari |
author_sort | Ghasem Zolfaghari |
collection | DOAJ |
description | At present study, the removal of p-nitrophenol (PNP) by a newly designed mesoporous organocarbon, monolayers of ß-cyclodextrine (CD) on oxidzed ordered nanoporous carbon (OX-ONC) via 1,4-phenylene diisocyanate (PDI) linking denoted as CD-ONC was optimized. Furthermore, Au-doped mesoporous carbon CMK-3 denoted as Au-OCMK-3 was synthesized by using SBA-15. Au-OCMK-3 has been studied for removal of dibenzothiphene (DBT) and carbazole (CA) from n-hexane. Also the functionalization of SBA-16 mesoporous with sulfonic acid for arsenic (As (V)) and copper (Cu (II)) removal were carried out (SBA-16-SO3H). Maximum absorption capacity of CD-ONC was 100 mg/g. Dubinin–Radushkevich isotherm was applied to describe the nature of PNP uptake and it was found that it occurred physically (E = 0.07 KJ/mol, CD-ONC). Value for Temkin’s heat of adsorption is positive for PNP (157.87 J/mol, CD-ONC). There are two physisorption models of PNP with the surface C=O groups of ONC (H-bond and dispersion effect between phenolic ring and π electrons). The overall PNP adsorption process was exothermic and spontaneous in nature according to thermodynamics parameters (free energy (ΔGo), enthalpy (ΔHo), and entropy (ΔSo)). We demonstrate that functionalization of CMK-3 with gold is possible (qm value for DBT: 15.33 mg/g and for CA: 13.00 mg/g). The adsorption capacity for As (V) on SBA-16- SO3H reaches 92.63 mg/g. The high removal of As equilibrium time of 90 minutes can be explained in terms of a strong electrostatic attraction that occurred between the SO3H and As. Maximum absorption capacity was 92.63 mg/g for As(V) was and 13.00 mg/g for Cu(II). |
format | Article |
id | doaj-art-b4345508d7ff42cfb376a51b03fccd28 |
institution | Kabale University |
issn | 2476-7204 2476-6615 |
language | English |
publishDate | 2024-05-01 |
publisher | Iranian Environmental Mutagen Society |
record_format | Article |
series | Journal of Water and Environmental Nanotechnology |
spelling | doaj-art-b4345508d7ff42cfb376a51b03fccd282025-01-12T09:34:26ZengIranian Environmental Mutagen SocietyJournal of Water and Environmental Nanotechnology2476-72042476-66152024-05-019214917210.22090/jwent.2024.02.03713101Highly efficient scavenging of nitrophenol, arsenic (V), copper (II), dibenzothiphene, and carbazole by nanoporous silica/carbon adsorbents for remediation of oil and water pollutantsGhasem Zolfaghari0Department of Environmental Sciences and Engineering, Faculty of Environmental Sciences, Hakim Sabzevari University, Razavi Khorasan, Sabzevar, P.O. Box: 397, IranAt present study, the removal of p-nitrophenol (PNP) by a newly designed mesoporous organocarbon, monolayers of ß-cyclodextrine (CD) on oxidzed ordered nanoporous carbon (OX-ONC) via 1,4-phenylene diisocyanate (PDI) linking denoted as CD-ONC was optimized. Furthermore, Au-doped mesoporous carbon CMK-3 denoted as Au-OCMK-3 was synthesized by using SBA-15. Au-OCMK-3 has been studied for removal of dibenzothiphene (DBT) and carbazole (CA) from n-hexane. Also the functionalization of SBA-16 mesoporous with sulfonic acid for arsenic (As (V)) and copper (Cu (II)) removal were carried out (SBA-16-SO3H). Maximum absorption capacity of CD-ONC was 100 mg/g. Dubinin–Radushkevich isotherm was applied to describe the nature of PNP uptake and it was found that it occurred physically (E = 0.07 KJ/mol, CD-ONC). Value for Temkin’s heat of adsorption is positive for PNP (157.87 J/mol, CD-ONC). There are two physisorption models of PNP with the surface C=O groups of ONC (H-bond and dispersion effect between phenolic ring and π electrons). The overall PNP adsorption process was exothermic and spontaneous in nature according to thermodynamics parameters (free energy (ΔGo), enthalpy (ΔHo), and entropy (ΔSo)). We demonstrate that functionalization of CMK-3 with gold is possible (qm value for DBT: 15.33 mg/g and for CA: 13.00 mg/g). The adsorption capacity for As (V) on SBA-16- SO3H reaches 92.63 mg/g. The high removal of As equilibrium time of 90 minutes can be explained in terms of a strong electrostatic attraction that occurred between the SO3H and As. Maximum absorption capacity was 92.63 mg/g for As(V) was and 13.00 mg/g for Cu(II).https://www.jwent.net/article_713101_b8a4ccb75fbb4345fd4f474dc96352ed.pdfligands-bridged mesoporoustaguchi methodresponse surface methodologyorganic pollutantsinorganic pollutants |
spellingShingle | Ghasem Zolfaghari Highly efficient scavenging of nitrophenol, arsenic (V), copper (II), dibenzothiphene, and carbazole by nanoporous silica/carbon adsorbents for remediation of oil and water pollutants Journal of Water and Environmental Nanotechnology ligands-bridged mesoporous taguchi method response surface methodology organic pollutants inorganic pollutants |
title | Highly efficient scavenging of nitrophenol, arsenic (V), copper (II), dibenzothiphene, and carbazole by nanoporous silica/carbon adsorbents for remediation of oil and water pollutants |
title_full | Highly efficient scavenging of nitrophenol, arsenic (V), copper (II), dibenzothiphene, and carbazole by nanoporous silica/carbon adsorbents for remediation of oil and water pollutants |
title_fullStr | Highly efficient scavenging of nitrophenol, arsenic (V), copper (II), dibenzothiphene, and carbazole by nanoporous silica/carbon adsorbents for remediation of oil and water pollutants |
title_full_unstemmed | Highly efficient scavenging of nitrophenol, arsenic (V), copper (II), dibenzothiphene, and carbazole by nanoporous silica/carbon adsorbents for remediation of oil and water pollutants |
title_short | Highly efficient scavenging of nitrophenol, arsenic (V), copper (II), dibenzothiphene, and carbazole by nanoporous silica/carbon adsorbents for remediation of oil and water pollutants |
title_sort | highly efficient scavenging of nitrophenol arsenic v copper ii dibenzothiphene and carbazole by nanoporous silica carbon adsorbents for remediation of oil and water pollutants |
topic | ligands-bridged mesoporous taguchi method response surface methodology organic pollutants inorganic pollutants |
url | https://www.jwent.net/article_713101_b8a4ccb75fbb4345fd4f474dc96352ed.pdf |
work_keys_str_mv | AT ghasemzolfaghari highlyefficientscavengingofnitrophenolarsenicvcopperiidibenzothipheneandcarbazolebynanoporoussilicacarbonadsorbentsforremediationofoilandwaterpollutants |