Climate change has increased the odds of extreme regional forest fire years globally
Abstract Regions across the globe have experienced devastating fire years in the past decade with far-reaching impacts. Here, we examine the role of antecedent and concurrent climate variability in enabling extreme regional fire years across global forests. These extreme years commonly coincided wit...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-07-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-025-61608-1 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Regions across the globe have experienced devastating fire years in the past decade with far-reaching impacts. Here, we examine the role of antecedent and concurrent climate variability in enabling extreme regional fire years across global forests. These extreme years commonly coincided with extreme (1-in-15-year) fire weather indices (FWI) and featured a four and five-fold increase in the number of large fires and fire carbon emissions, respectively, compared with non-extreme years. Years with such extreme FWI metrics are 88-152% more likely across global forested lands under a contemporary (2011–2040) climate compared to a quasi-preindustrial (1851–1900) climate, with the most pronounced increased risk in temperate and Amazonian forests. Our results show that human-caused climate change is raising the odds of extreme climate-driven fire years across forested regions of the globe, necessitating proactive measures to mitigate risks and adapt to extreme fire years. |
|---|---|
| ISSN: | 2041-1723 |