Stability of Leray weak solutions to 3D Navier-Stokes equations

In this article, we show that if the Leray weak solution $u$ of the three-dimensional Navier-Stokes system satisfies $$ \nabla u\in L^p(0,\infty;\dot B^0_{q,\infty}(\mathbb{R}^3)),\quad \frac{2}{p}+\frac{3}{q} =2,\quad \frac{3}{2}<q<\infty, $$ or $$ \nabla u\in L^\frac{2}{2-r}(0,\infty;\dot B^...

Full description

Saved in:
Bibliographic Details
Main Authors: Zujin Zhang, Weijun Yuan, Zhengan Yao
Format: Article
Language:English
Published: Texas State University 2025-07-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2025/79/abstr.html
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this article, we show that if the Leray weak solution $u$ of the three-dimensional Navier-Stokes system satisfies $$ \nabla u\in L^p(0,\infty;\dot B^0_{q,\infty}(\mathbb{R}^3)),\quad \frac{2}{p}+\frac{3}{q} =2,\quad \frac{3}{2}<q<\infty, $$ or $$ \nabla u\in L^\frac{2}{2-r}(0,\infty;\dot B^{-r}_{\infty,\infty}(\mathbb{R}^3)),\quad 0<r<1, $$ then $u$ is uniformly stable, under small perturbation of initial data and external force, is asymptotically stable in the $L^2$ sense, is unique amongst all the Leray weak solutions, and satisfies some energy type equalities. Also under spectral condition on the initial perturbation, we obtain optimal upper and lower bounds of convergence rates. Our results extend the results in [6,11]
ISSN:1072-6691