Isolation of proteinase K-sensitive prions using pronase E and phosphotungstic acid.

Disease-related prion protein, PrP(Sc), is classically distinguished from its normal cellular precursor, PrP(C), by its detergent insolubility and partial resistance to proteolysis. Molecular diagnosis of prion disease typically relies upon detection of protease-resistant fragments of PrP(Sc) using...

Full description

Saved in:
Bibliographic Details
Main Authors: Laura D'Castro, Adam Wenborn, Nathalie Gros, Susan Joiner, Sabrina Cronier, John Collinge, Jonathan D F Wadsworth
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2010-12-01
Series:PLoS ONE
Online Access:https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0015679&type=printable
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Disease-related prion protein, PrP(Sc), is classically distinguished from its normal cellular precursor, PrP(C), by its detergent insolubility and partial resistance to proteolysis. Molecular diagnosis of prion disease typically relies upon detection of protease-resistant fragments of PrP(Sc) using proteinase K, however it is now apparent that the majority of disease-related PrP and indeed prion infectivity may be destroyed by this treatment. Here we report that digestion of RML prion-infected mouse brain with pronase E, followed by precipitation with sodium phosphotungstic acid, eliminates the large majority of brain proteins, including PrP(C), while preserving >70% of infectious prion titre. This procedure now allows characterization of proteinase K-sensitive prions and investigation of their clinical relevance in human and animal prion disease without being confounded by contaminating PrP(C).
ISSN:1932-6203