Hemodynamics and Mechanobiology of Aortic Valve Inflammation and Calcification
Cardiac valves function in a mechanically complex environment, opening and closing close to a billion times during the average human lifetime, experiencing transvalvular pressures and pulsatile and oscillatory shear stresses, as wel...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2011-01-01
|
| Series: | International Journal of Inflammation |
| Online Access: | http://dx.doi.org/10.4061/2011/263870 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Cardiac valves function in a mechanically
complex environment, opening and closing close to
a billion times during the average human lifetime,
experiencing transvalvular pressures and pulsatile
and oscillatory shear stresses, as well as bending
and axial stress. Although valves were originally thought to be
passive pieces of tissue, recent evidence points
to an intimate interplay between the hemodynamic
environment and biological response of the valve.
Several decades of study have been devoted to
understanding these varied mechanical stimuli and
how they might induce valve pathology. Here, we
review efforts taken in understanding the valvular
response to its mechanical milieu and key
insights gained from in vitro and
ex vivo whole-tissue studies in
the mechanobiology of aortic valve remodeling,
inflammation, and calcification. |
|---|---|
| ISSN: | 2042-0099 |