The Cytotoxic Potential of Humanized γδ T Cells Against Human Cancer Cell Lines in <i>In Vitro</i>

Cancer is a major global health issue, with rising incidence rates highlighting the urgent need for more effective treatments. Despite advances in cancer therapy, challenges such as adverse effects and limitations of existing treatments remain. Immunotherapy, which harnesses the body’s immune system...

Full description

Saved in:
Bibliographic Details
Main Authors: Husheem Michael, Abigail T. Lenihan, Mikaela M. Vallas, Gene W. Weng, Jonathan Barber, Wei He, Ellen Chen, Paul Sheiffele, Wei Weng
Format: Article
Language:English
Published: MDPI AG 2025-08-01
Series:Cells
Subjects:
Online Access:https://www.mdpi.com/2073-4409/14/15/1197
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cancer is a major global health issue, with rising incidence rates highlighting the urgent need for more effective treatments. Despite advances in cancer therapy, challenges such as adverse effects and limitations of existing treatments remain. Immunotherapy, which harnesses the body’s immune system to target cancer cells, offers promising solutions. Gamma delta (γδ) T cells are noteworthy due to their potent ability to kill various cancer cells without needing conventional antigen presentation. Recent studies have focused on the role of γδ T cells in α-galactosylceramide (α-GalCer)-mediated immunity, opening new possibilities for cancer immunotherapy. We engineered humanized T cell receptor (HuTCR)-T1 γδ mice by replacing mouse sequences with human counterparts. This study investigates the cytotoxic activity of humanized γδ T cells against several human cancer cell lines (A431, HT-29, K562, and Daudi) <i>in vitro</i>, aiming to elucidate mechanisms underlying their anticancer efficacy. Human cancer cells were co-cultured with humanized γδ T cells, with and without α-GalCer, for 24 h. The humanized γδ T cells showed enhanced cytotoxicity across all tested cancer cell lines compared to wild-type γδ T cells. Additionally, γδ T cells from HuTCR-T1 mice exhibited higher levels of anticancer cytokines (IFN-γ, TNF-α, and IL-17) and Granzyme B, indicating their potential as potent mediators of anticancer immune responses. Blocking γδ T cells’ cytotoxicity confirmed their γδ-mediated function. These findings represent a significant step in preclinical development of γδ T cell-based cancer immunotherapies, providing insights into their mechanisms of action, optimization of therapeutic strategies, and identification of predictive biomarkers for clinical application.
ISSN:2073-4409