The vanishing of anticyclotomic $\mu $-invariants for non-ordinary modular forms

Let $K$ be an imaginary quadratic field where $p$ splits. We study signed Selmer groups for non-ordinary modular forms over the anticyclotomic $\mathbb{Z}_p$-extension of $K$, showing that one inclusion of an Iwasawa main conjecture involving the $p$-adic $L$-function of Bertolini–Darmon–Prasanna im...

Full description

Saved in:
Bibliographic Details
Main Authors: Hatley, Jeffrey, Lei, Antonio
Format: Article
Language:English
Published: Académie des sciences 2023-01-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.389/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206326411657216
author Hatley, Jeffrey
Lei, Antonio
author_facet Hatley, Jeffrey
Lei, Antonio
author_sort Hatley, Jeffrey
collection DOAJ
description Let $K$ be an imaginary quadratic field where $p$ splits. We study signed Selmer groups for non-ordinary modular forms over the anticyclotomic $\mathbb{Z}_p$-extension of $K$, showing that one inclusion of an Iwasawa main conjecture involving the $p$-adic $L$-function of Bertolini–Darmon–Prasanna implies that their $\mu $-invariants vanish. This gives an alternative method to reprove a recent result of Matar on the vanishing of the $\mu $-invariants of plus and minus signed Selmer groups for elliptic curves.
format Article
id doaj-art-b2d7068514be4492a12bacd03eb68086
institution Kabale University
issn 1778-3569
language English
publishDate 2023-01-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-b2d7068514be4492a12bacd03eb680862025-02-07T11:06:07ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692023-01-01361G1657210.5802/crmath.38910.5802/crmath.389The vanishing of anticyclotomic $\mu $-invariants for non-ordinary modular formsHatley, Jeffrey0https://orcid.org/0000-0002-6883-1316Lei, Antonio1https://orcid.org/0000-0001-9453-3112Department of Mathematics, Union College, Bailey Hall 202, Schenectady, NY 12308, USADepartment of Mathematics and Statistics, University of Ottawa, 150 Louis-Pasteur Pvt, Ottawa, ON, Canada K1N 6N5Let $K$ be an imaginary quadratic field where $p$ splits. We study signed Selmer groups for non-ordinary modular forms over the anticyclotomic $\mathbb{Z}_p$-extension of $K$, showing that one inclusion of an Iwasawa main conjecture involving the $p$-adic $L$-function of Bertolini–Darmon–Prasanna implies that their $\mu $-invariants vanish. This gives an alternative method to reprove a recent result of Matar on the vanishing of the $\mu $-invariants of plus and minus signed Selmer groups for elliptic curves.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.389/
spellingShingle Hatley, Jeffrey
Lei, Antonio
The vanishing of anticyclotomic $\mu $-invariants for non-ordinary modular forms
Comptes Rendus. Mathématique
title The vanishing of anticyclotomic $\mu $-invariants for non-ordinary modular forms
title_full The vanishing of anticyclotomic $\mu $-invariants for non-ordinary modular forms
title_fullStr The vanishing of anticyclotomic $\mu $-invariants for non-ordinary modular forms
title_full_unstemmed The vanishing of anticyclotomic $\mu $-invariants for non-ordinary modular forms
title_short The vanishing of anticyclotomic $\mu $-invariants for non-ordinary modular forms
title_sort vanishing of anticyclotomic mu invariants for non ordinary modular forms
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.389/
work_keys_str_mv AT hatleyjeffrey thevanishingofanticyclotomicmuinvariantsfornonordinarymodularforms
AT leiantonio thevanishingofanticyclotomicmuinvariantsfornonordinarymodularforms
AT hatleyjeffrey vanishingofanticyclotomicmuinvariantsfornonordinarymodularforms
AT leiantonio vanishingofanticyclotomicmuinvariantsfornonordinarymodularforms