Unrolled Optimization via Physics-Assisted Convolutional Neural Network for MR-Based Electrical Properties Tomography: A Numerical Investigation

Magnetic Resonance imaging based Electrical Properties Tomography (MR-EPT) is a non-invasive technique that measures the electrical properties (EPs) of biological tissues. In this work, we present and numerically investigate the performance of an unrolled, physics-assisted method for 2D MR-EPT recon...

Full description

Saved in:
Bibliographic Details
Main Authors: Sabrina Zumbo, Stefano Mandija, Ettore F. Meliado, Peter Stijnman, Thierry G. Meerbothe, Cornelis A.T. van den Berg, Tommaso Isernia, Martina T. Bevacqua
Format: Article
Language:English
Published: IEEE 2024-01-01
Series:IEEE Open Journal of Engineering in Medicine and Biology
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10534835/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832582330134298624
author Sabrina Zumbo
Stefano Mandija
Ettore F. Meliado
Peter Stijnman
Thierry G. Meerbothe
Cornelis A.T. van den Berg
Tommaso Isernia
Martina T. Bevacqua
author_facet Sabrina Zumbo
Stefano Mandija
Ettore F. Meliado
Peter Stijnman
Thierry G. Meerbothe
Cornelis A.T. van den Berg
Tommaso Isernia
Martina T. Bevacqua
author_sort Sabrina Zumbo
collection DOAJ
description Magnetic Resonance imaging based Electrical Properties Tomography (MR-EPT) is a non-invasive technique that measures the electrical properties (EPs) of biological tissues. In this work, we present and numerically investigate the performance of an unrolled, physics-assisted method for 2D MR-EPT reconstructions, where a cascade of Convolutional Neural Networks is used to compute the contrast update. Each network takes in input the EPs and the gradient descent direction (encoding the physics underlying the adopted scattering model) and returns as output the updated contrast function. The network is trained and tested in silico using 2D slices of realistic brain models at 128 MHz. Results show the capability of the proposed procedure to reconstruct EPs maps with quality comparable to that of the popular Contrast Source Inversion-EPT, while significantly reducing the computational time.
format Article
id doaj-art-b2bccd4ee1b74e24a32c9dbc86bac947
institution Kabale University
issn 2644-1276
language English
publishDate 2024-01-01
publisher IEEE
record_format Article
series IEEE Open Journal of Engineering in Medicine and Biology
spelling doaj-art-b2bccd4ee1b74e24a32c9dbc86bac9472025-01-30T00:03:53ZengIEEEIEEE Open Journal of Engineering in Medicine and Biology2644-12762024-01-01550551310.1109/OJEMB.2024.340299810534835Unrolled Optimization via Physics-Assisted Convolutional Neural Network for MR-Based Electrical Properties Tomography: A Numerical InvestigationSabrina Zumbo0Stefano Mandija1https://orcid.org/0000-0002-4612-5509Ettore F. Meliado2https://orcid.org/0000-0003-1240-3141Peter Stijnman3https://orcid.org/0000-0001-8277-1420Thierry G. Meerbothe4https://orcid.org/0009-0009-5736-1038Cornelis A.T. van den Berg5https://orcid.org/0000-0002-5565-6889Tommaso Isernia6https://orcid.org/0000-0003-3830-9540Martina T. Bevacqua7https://orcid.org/0000-0001-6557-1283Department DIIES, Università Mediterranea di Reggio Calabria, Reggio Calabria, ItalyDepartment of Radiotherapy, Division of Imaging & Oncology, University Medical Center Utrecht, Utrecht, The NetherlandsComputational Imaging Group for MR Diagnostics & Therapy, Center for Image Sciences, Utrecht University, Utrecht, The NetherlandsDepartment of Radiotherapy, Division of Imaging & Oncology, University Medical Center Utrecht, Utrecht, The NetherlandsDepartment of Radiotherapy, Division of Imaging & Oncology, University Medical Center Utrecht, Utrecht, The NetherlandsDepartment of Radiotherapy, Division of Imaging & Oncology, University Medical Center Utrecht, Utrecht, The NetherlandsDepartment DIIES, Università Mediterranea di Reggio Calabria, Reggio Calabria, ItalyDepartment DIIES, Università Mediterranea di Reggio Calabria, Reggio Calabria, ItalyMagnetic Resonance imaging based Electrical Properties Tomography (MR-EPT) is a non-invasive technique that measures the electrical properties (EPs) of biological tissues. In this work, we present and numerically investigate the performance of an unrolled, physics-assisted method for 2D MR-EPT reconstructions, where a cascade of Convolutional Neural Networks is used to compute the contrast update. Each network takes in input the EPs and the gradient descent direction (encoding the physics underlying the adopted scattering model) and returns as output the updated contrast function. The network is trained and tested in silico using 2D slices of realistic brain models at 128 MHz. Results show the capability of the proposed procedure to reconstruct EPs maps with quality comparable to that of the popular Contrast Source Inversion-EPT, while significantly reducing the computational time.https://ieeexplore.ieee.org/document/10534835/Convolutional neural networkelectrical propertiesinverse scattering problemslearning methodsmagnetic resonance imaging
spellingShingle Sabrina Zumbo
Stefano Mandija
Ettore F. Meliado
Peter Stijnman
Thierry G. Meerbothe
Cornelis A.T. van den Berg
Tommaso Isernia
Martina T. Bevacqua
Unrolled Optimization via Physics-Assisted Convolutional Neural Network for MR-Based Electrical Properties Tomography: A Numerical Investigation
IEEE Open Journal of Engineering in Medicine and Biology
Convolutional neural network
electrical properties
inverse scattering problems
learning methods
magnetic resonance imaging
title Unrolled Optimization via Physics-Assisted Convolutional Neural Network for MR-Based Electrical Properties Tomography: A Numerical Investigation
title_full Unrolled Optimization via Physics-Assisted Convolutional Neural Network for MR-Based Electrical Properties Tomography: A Numerical Investigation
title_fullStr Unrolled Optimization via Physics-Assisted Convolutional Neural Network for MR-Based Electrical Properties Tomography: A Numerical Investigation
title_full_unstemmed Unrolled Optimization via Physics-Assisted Convolutional Neural Network for MR-Based Electrical Properties Tomography: A Numerical Investigation
title_short Unrolled Optimization via Physics-Assisted Convolutional Neural Network for MR-Based Electrical Properties Tomography: A Numerical Investigation
title_sort unrolled optimization via physics assisted convolutional neural network for mr based electrical properties tomography a numerical investigation
topic Convolutional neural network
electrical properties
inverse scattering problems
learning methods
magnetic resonance imaging
url https://ieeexplore.ieee.org/document/10534835/
work_keys_str_mv AT sabrinazumbo unrolledoptimizationviaphysicsassistedconvolutionalneuralnetworkformrbasedelectricalpropertiestomographyanumericalinvestigation
AT stefanomandija unrolledoptimizationviaphysicsassistedconvolutionalneuralnetworkformrbasedelectricalpropertiestomographyanumericalinvestigation
AT ettorefmeliado unrolledoptimizationviaphysicsassistedconvolutionalneuralnetworkformrbasedelectricalpropertiestomographyanumericalinvestigation
AT peterstijnman unrolledoptimizationviaphysicsassistedconvolutionalneuralnetworkformrbasedelectricalpropertiestomographyanumericalinvestigation
AT thierrygmeerbothe unrolledoptimizationviaphysicsassistedconvolutionalneuralnetworkformrbasedelectricalpropertiestomographyanumericalinvestigation
AT cornelisatvandenberg unrolledoptimizationviaphysicsassistedconvolutionalneuralnetworkformrbasedelectricalpropertiestomographyanumericalinvestigation
AT tommasoisernia unrolledoptimizationviaphysicsassistedconvolutionalneuralnetworkformrbasedelectricalpropertiestomographyanumericalinvestigation
AT martinatbevacqua unrolledoptimizationviaphysicsassistedconvolutionalneuralnetworkformrbasedelectricalpropertiestomographyanumericalinvestigation