An elite allele TaDT1-A hapI enhances drought tolerance via mediating autophagic pathways in wheat
Abstract Drought stress constitutes a major threat to global wheat production. Identification of the genetic components underlying drought tolerance in wheat is highly important. Through a genome-wide association study, we identify a natural allele of the zinc finger-type transcription factor TaDT1-...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-07-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-025-61943-3 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849764343808262144 |
|---|---|
| author | Xingbei Liu Jinpeng Li Chenji Zhang Danyang Zhao Xiao Peng Qun Yang Zehui Liu Lingfeng Miao Wei Chu Jingchen Lin Shumin Chang Debiao Liu Xiaoyu Liu Wenxi Wang Xiaobo Wang Mingming Xin Yingyin Yao Weilong Guo Xiaodong Xie Huiru Peng Zhongfu Ni Qixin Sun Zhaorong Hu |
| author_facet | Xingbei Liu Jinpeng Li Chenji Zhang Danyang Zhao Xiao Peng Qun Yang Zehui Liu Lingfeng Miao Wei Chu Jingchen Lin Shumin Chang Debiao Liu Xiaoyu Liu Wenxi Wang Xiaobo Wang Mingming Xin Yingyin Yao Weilong Guo Xiaodong Xie Huiru Peng Zhongfu Ni Qixin Sun Zhaorong Hu |
| author_sort | Xingbei Liu |
| collection | DOAJ |
| description | Abstract Drought stress constitutes a major threat to global wheat production. Identification of the genetic components underlying drought tolerance in wheat is highly important. Through a genome-wide association study, we identify a natural allele of the zinc finger-type transcription factor TaDT1-A on chromosome 2 A of the wheat genome that confers drought tolerance without imposing trade-offs between tolerance and yield. This allele, named TaDT1-A hapI, causes an 899-bp deletion in the promoter of the TaDT1-A gene, which results in increased expression of the gene through escape of the repressive MYC transcription factor and, consequently, the promotion of stomatal dynamics and water use efficiency via increased autophagy activity. Our findings provide genetic insights into the natural variation in wheat drought tolerance. The identified loci or genes can serve as direct targets for both genetic engineering and selection for wheat trait improvement. |
| format | Article |
| id | doaj-art-b2bbfa9f43324f2c960be917bcc4a01b |
| institution | DOAJ |
| issn | 2041-1723 |
| language | English |
| publishDate | 2025-07-01 |
| publisher | Nature Portfolio |
| record_format | Article |
| series | Nature Communications |
| spelling | doaj-art-b2bbfa9f43324f2c960be917bcc4a01b2025-08-20T03:05:09ZengNature PortfolioNature Communications2041-17232025-07-0116111710.1038/s41467-025-61943-3An elite allele TaDT1-A hapI enhances drought tolerance via mediating autophagic pathways in wheatXingbei Liu0Jinpeng Li1Chenji Zhang2Danyang Zhao3Xiao Peng4Qun Yang5Zehui Liu6Lingfeng Miao7Wei Chu8Jingchen Lin9Shumin Chang10Debiao Liu11Xiaoyu Liu12Wenxi Wang13Xiaobo Wang14Mingming Xin15Yingyin Yao16Weilong Guo17Xiaodong Xie18Huiru Peng19Zhongfu Ni20Qixin Sun21Zhaorong Hu22State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping/Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural UniversityState Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping/Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural UniversityState Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping/Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural UniversityState Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping/Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural UniversityState Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping/Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural UniversityState Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping/Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural UniversityState Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping/Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural UniversityState Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping/Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural UniversityState Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping/Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural UniversityState Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping/Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural UniversityState Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping/Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural UniversityState Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping/Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural UniversityState Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping/Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural UniversityState Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping/Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural UniversityState Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping/Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural UniversityState Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping/Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural UniversityState Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping/Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural UniversityState Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping/Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural UniversityInternational Joint Center for the Mechanismic Dissection and Genetic Improvement of Crop Stress Tolerance, College of Agriculture & Resources and Environmental Sciences, Tianjin Agricultural UniversityState Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping/Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural UniversityState Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping/Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural UniversityState Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping/Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural UniversityState Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping/Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural UniversityAbstract Drought stress constitutes a major threat to global wheat production. Identification of the genetic components underlying drought tolerance in wheat is highly important. Through a genome-wide association study, we identify a natural allele of the zinc finger-type transcription factor TaDT1-A on chromosome 2 A of the wheat genome that confers drought tolerance without imposing trade-offs between tolerance and yield. This allele, named TaDT1-A hapI, causes an 899-bp deletion in the promoter of the TaDT1-A gene, which results in increased expression of the gene through escape of the repressive MYC transcription factor and, consequently, the promotion of stomatal dynamics and water use efficiency via increased autophagy activity. Our findings provide genetic insights into the natural variation in wheat drought tolerance. The identified loci or genes can serve as direct targets for both genetic engineering and selection for wheat trait improvement.https://doi.org/10.1038/s41467-025-61943-3 |
| spellingShingle | Xingbei Liu Jinpeng Li Chenji Zhang Danyang Zhao Xiao Peng Qun Yang Zehui Liu Lingfeng Miao Wei Chu Jingchen Lin Shumin Chang Debiao Liu Xiaoyu Liu Wenxi Wang Xiaobo Wang Mingming Xin Yingyin Yao Weilong Guo Xiaodong Xie Huiru Peng Zhongfu Ni Qixin Sun Zhaorong Hu An elite allele TaDT1-A hapI enhances drought tolerance via mediating autophagic pathways in wheat Nature Communications |
| title | An elite allele TaDT1-A hapI enhances drought tolerance via mediating autophagic pathways in wheat |
| title_full | An elite allele TaDT1-A hapI enhances drought tolerance via mediating autophagic pathways in wheat |
| title_fullStr | An elite allele TaDT1-A hapI enhances drought tolerance via mediating autophagic pathways in wheat |
| title_full_unstemmed | An elite allele TaDT1-A hapI enhances drought tolerance via mediating autophagic pathways in wheat |
| title_short | An elite allele TaDT1-A hapI enhances drought tolerance via mediating autophagic pathways in wheat |
| title_sort | elite allele tadt1 a hapi enhances drought tolerance via mediating autophagic pathways in wheat |
| url | https://doi.org/10.1038/s41467-025-61943-3 |
| work_keys_str_mv | AT xingbeiliu anelitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat AT jinpengli anelitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat AT chenjizhang anelitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat AT danyangzhao anelitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat AT xiaopeng anelitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat AT qunyang anelitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat AT zehuiliu anelitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat AT lingfengmiao anelitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat AT weichu anelitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat AT jingchenlin anelitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat AT shuminchang anelitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat AT debiaoliu anelitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat AT xiaoyuliu anelitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat AT wenxiwang anelitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat AT xiaobowang anelitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat AT mingmingxin anelitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat AT yingyinyao anelitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat AT weilongguo anelitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat AT xiaodongxie anelitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat AT huirupeng anelitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat AT zhongfuni anelitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat AT qixinsun anelitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat AT zhaoronghu anelitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat AT xingbeiliu elitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat AT jinpengli elitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat AT chenjizhang elitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat AT danyangzhao elitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat AT xiaopeng elitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat AT qunyang elitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat AT zehuiliu elitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat AT lingfengmiao elitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat AT weichu elitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat AT jingchenlin elitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat AT shuminchang elitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat AT debiaoliu elitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat AT xiaoyuliu elitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat AT wenxiwang elitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat AT xiaobowang elitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat AT mingmingxin elitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat AT yingyinyao elitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat AT weilongguo elitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat AT xiaodongxie elitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat AT huirupeng elitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat AT zhongfuni elitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat AT qixinsun elitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat AT zhaoronghu elitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat |