An elite allele TaDT1-A hapI enhances drought tolerance via mediating autophagic pathways in wheat

Abstract Drought stress constitutes a major threat to global wheat production. Identification of the genetic components underlying drought tolerance in wheat is highly important. Through a genome-wide association study, we identify a natural allele of the zinc finger-type transcription factor TaDT1-...

Full description

Saved in:
Bibliographic Details
Main Authors: Xingbei Liu, Jinpeng Li, Chenji Zhang, Danyang Zhao, Xiao Peng, Qun Yang, Zehui Liu, Lingfeng Miao, Wei Chu, Jingchen Lin, Shumin Chang, Debiao Liu, Xiaoyu Liu, Wenxi Wang, Xiaobo Wang, Mingming Xin, Yingyin Yao, Weilong Guo, Xiaodong Xie, Huiru Peng, Zhongfu Ni, Qixin Sun, Zhaorong Hu
Format: Article
Language:English
Published: Nature Portfolio 2025-07-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-025-61943-3
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849764343808262144
author Xingbei Liu
Jinpeng Li
Chenji Zhang
Danyang Zhao
Xiao Peng
Qun Yang
Zehui Liu
Lingfeng Miao
Wei Chu
Jingchen Lin
Shumin Chang
Debiao Liu
Xiaoyu Liu
Wenxi Wang
Xiaobo Wang
Mingming Xin
Yingyin Yao
Weilong Guo
Xiaodong Xie
Huiru Peng
Zhongfu Ni
Qixin Sun
Zhaorong Hu
author_facet Xingbei Liu
Jinpeng Li
Chenji Zhang
Danyang Zhao
Xiao Peng
Qun Yang
Zehui Liu
Lingfeng Miao
Wei Chu
Jingchen Lin
Shumin Chang
Debiao Liu
Xiaoyu Liu
Wenxi Wang
Xiaobo Wang
Mingming Xin
Yingyin Yao
Weilong Guo
Xiaodong Xie
Huiru Peng
Zhongfu Ni
Qixin Sun
Zhaorong Hu
author_sort Xingbei Liu
collection DOAJ
description Abstract Drought stress constitutes a major threat to global wheat production. Identification of the genetic components underlying drought tolerance in wheat is highly important. Through a genome-wide association study, we identify a natural allele of the zinc finger-type transcription factor TaDT1-A on chromosome 2 A of the wheat genome that confers drought tolerance without imposing trade-offs between tolerance and yield. This allele, named TaDT1-A hapI, causes an 899-bp deletion in the promoter of the TaDT1-A gene, which results in increased expression of the gene through escape of the repressive MYC transcription factor and, consequently, the promotion of stomatal dynamics and water use efficiency via increased autophagy activity. Our findings provide genetic insights into the natural variation in wheat drought tolerance. The identified loci or genes can serve as direct targets for both genetic engineering and selection for wheat trait improvement.
format Article
id doaj-art-b2bbfa9f43324f2c960be917bcc4a01b
institution DOAJ
issn 2041-1723
language English
publishDate 2025-07-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj-art-b2bbfa9f43324f2c960be917bcc4a01b2025-08-20T03:05:09ZengNature PortfolioNature Communications2041-17232025-07-0116111710.1038/s41467-025-61943-3An elite allele TaDT1-A hapI enhances drought tolerance via mediating autophagic pathways in wheatXingbei Liu0Jinpeng Li1Chenji Zhang2Danyang Zhao3Xiao Peng4Qun Yang5Zehui Liu6Lingfeng Miao7Wei Chu8Jingchen Lin9Shumin Chang10Debiao Liu11Xiaoyu Liu12Wenxi Wang13Xiaobo Wang14Mingming Xin15Yingyin Yao16Weilong Guo17Xiaodong Xie18Huiru Peng19Zhongfu Ni20Qixin Sun21Zhaorong Hu22State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping/Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural UniversityState Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping/Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural UniversityState Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping/Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural UniversityState Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping/Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural UniversityState Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping/Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural UniversityState Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping/Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural UniversityState Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping/Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural UniversityState Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping/Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural UniversityState Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping/Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural UniversityState Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping/Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural UniversityState Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping/Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural UniversityState Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping/Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural UniversityState Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping/Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural UniversityState Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping/Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural UniversityState Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping/Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural UniversityState Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping/Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural UniversityState Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping/Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural UniversityState Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping/Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural UniversityInternational Joint Center for the Mechanismic Dissection and Genetic Improvement of Crop Stress Tolerance, College of Agriculture & Resources and Environmental Sciences, Tianjin Agricultural UniversityState Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping/Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural UniversityState Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping/Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural UniversityState Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping/Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural UniversityState Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping/Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural UniversityAbstract Drought stress constitutes a major threat to global wheat production. Identification of the genetic components underlying drought tolerance in wheat is highly important. Through a genome-wide association study, we identify a natural allele of the zinc finger-type transcription factor TaDT1-A on chromosome 2 A of the wheat genome that confers drought tolerance without imposing trade-offs between tolerance and yield. This allele, named TaDT1-A hapI, causes an 899-bp deletion in the promoter of the TaDT1-A gene, which results in increased expression of the gene through escape of the repressive MYC transcription factor and, consequently, the promotion of stomatal dynamics and water use efficiency via increased autophagy activity. Our findings provide genetic insights into the natural variation in wheat drought tolerance. The identified loci or genes can serve as direct targets for both genetic engineering and selection for wheat trait improvement.https://doi.org/10.1038/s41467-025-61943-3
spellingShingle Xingbei Liu
Jinpeng Li
Chenji Zhang
Danyang Zhao
Xiao Peng
Qun Yang
Zehui Liu
Lingfeng Miao
Wei Chu
Jingchen Lin
Shumin Chang
Debiao Liu
Xiaoyu Liu
Wenxi Wang
Xiaobo Wang
Mingming Xin
Yingyin Yao
Weilong Guo
Xiaodong Xie
Huiru Peng
Zhongfu Ni
Qixin Sun
Zhaorong Hu
An elite allele TaDT1-A hapI enhances drought tolerance via mediating autophagic pathways in wheat
Nature Communications
title An elite allele TaDT1-A hapI enhances drought tolerance via mediating autophagic pathways in wheat
title_full An elite allele TaDT1-A hapI enhances drought tolerance via mediating autophagic pathways in wheat
title_fullStr An elite allele TaDT1-A hapI enhances drought tolerance via mediating autophagic pathways in wheat
title_full_unstemmed An elite allele TaDT1-A hapI enhances drought tolerance via mediating autophagic pathways in wheat
title_short An elite allele TaDT1-A hapI enhances drought tolerance via mediating autophagic pathways in wheat
title_sort elite allele tadt1 a hapi enhances drought tolerance via mediating autophagic pathways in wheat
url https://doi.org/10.1038/s41467-025-61943-3
work_keys_str_mv AT xingbeiliu anelitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat
AT jinpengli anelitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat
AT chenjizhang anelitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat
AT danyangzhao anelitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat
AT xiaopeng anelitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat
AT qunyang anelitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat
AT zehuiliu anelitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat
AT lingfengmiao anelitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat
AT weichu anelitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat
AT jingchenlin anelitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat
AT shuminchang anelitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat
AT debiaoliu anelitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat
AT xiaoyuliu anelitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat
AT wenxiwang anelitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat
AT xiaobowang anelitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat
AT mingmingxin anelitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat
AT yingyinyao anelitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat
AT weilongguo anelitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat
AT xiaodongxie anelitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat
AT huirupeng anelitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat
AT zhongfuni anelitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat
AT qixinsun anelitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat
AT zhaoronghu anelitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat
AT xingbeiliu elitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat
AT jinpengli elitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat
AT chenjizhang elitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat
AT danyangzhao elitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat
AT xiaopeng elitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat
AT qunyang elitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat
AT zehuiliu elitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat
AT lingfengmiao elitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat
AT weichu elitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat
AT jingchenlin elitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat
AT shuminchang elitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat
AT debiaoliu elitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat
AT xiaoyuliu elitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat
AT wenxiwang elitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat
AT xiaobowang elitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat
AT mingmingxin elitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat
AT yingyinyao elitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat
AT weilongguo elitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat
AT xiaodongxie elitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat
AT huirupeng elitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat
AT zhongfuni elitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat
AT qixinsun elitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat
AT zhaoronghu elitealleletadt1ahapienhancesdroughttoleranceviamediatingautophagicpathwaysinwheat