State-Space Solution to Spectral Entropy Analysis and Optimal State-Feedback Control for Continuous-Time Linear Systems

In this paper, a problem of random disturbance attenuation capabilities for linear time-invariant continuous systems, affected by random disturbances with bounded <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi...

Full description

Saved in:
Bibliographic Details
Main Authors: Victor A. Boichenko, Alexey A. Belov, Olga G. Andrianova
Format: Article
Language:English
Published: MDPI AG 2024-11-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/12/22/3604
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850227134003412992
author Victor A. Boichenko
Alexey A. Belov
Olga G. Andrianova
author_facet Victor A. Boichenko
Alexey A. Belov
Olga G. Andrianova
author_sort Victor A. Boichenko
collection DOAJ
description In this paper, a problem of random disturbance attenuation capabilities for linear time-invariant continuous systems, affected by random disturbances with bounded <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula>-entropy, is studied. The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula>-entropy norm defines a performance index of the system on the set of the aforementioned input signals. Two problems are considered. The first is a state-space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula>-entropy analysis of linear systems, and the second is an optimal control design using the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula>-entropy norm as an optimization objective. The state-space solution to the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula>-entropy analysis problem is derived from the representation of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula>-entropy norm in the frequency domain. The formulae of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula>-entropy norm computation in the state space are presented in the form of coupled matrix equations: one algebraic Riccati equation, one nonlinear equation over log determinant function, and two Lyapunov equations. Optimal control law is obtained using game theory and a saddle-point condition of optimality. The optimal state-feedback control, which minimizes the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula>-entropy norm of the closed-loop system, is found from the solution of two algebraic Riccati equations, one Lyapunov equation, and the log determinant equation.
format Article
id doaj-art-b2b33da6744242c9a34bb5d17e9593e3
institution OA Journals
issn 2227-7390
language English
publishDate 2024-11-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-b2b33da6744242c9a34bb5d17e9593e32025-08-20T02:04:54ZengMDPI AGMathematics2227-73902024-11-011222360410.3390/math12223604State-Space Solution to Spectral Entropy Analysis and Optimal State-Feedback Control for Continuous-Time Linear SystemsVictor A. Boichenko0Alexey A. Belov1Olga G. Andrianova2V.A. Trapeznikov Institute of Control Sciences of RAS, Moscow 117997, RussiaV.A. Trapeznikov Institute of Control Sciences of RAS, Moscow 117997, RussiaV.A. Trapeznikov Institute of Control Sciences of RAS, Moscow 117997, RussiaIn this paper, a problem of random disturbance attenuation capabilities for linear time-invariant continuous systems, affected by random disturbances with bounded <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula>-entropy, is studied. The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula>-entropy norm defines a performance index of the system on the set of the aforementioned input signals. Two problems are considered. The first is a state-space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula>-entropy analysis of linear systems, and the second is an optimal control design using the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula>-entropy norm as an optimization objective. The state-space solution to the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula>-entropy analysis problem is derived from the representation of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula>-entropy norm in the frequency domain. The formulae of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula>-entropy norm computation in the state space are presented in the form of coupled matrix equations: one algebraic Riccati equation, one nonlinear equation over log determinant function, and two Lyapunov equations. Optimal control law is obtained using game theory and a saddle-point condition of optimality. The optimal state-feedback control, which minimizes the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula>-entropy norm of the closed-loop system, is found from the solution of two algebraic Riccati equations, one Lyapunov equation, and the log determinant equation.https://www.mdpi.com/2227-7390/12/22/3604linear systemsspectral entropyoptimal controlrobust controlalgebraic Riccati equation
spellingShingle Victor A. Boichenko
Alexey A. Belov
Olga G. Andrianova
State-Space Solution to Spectral Entropy Analysis and Optimal State-Feedback Control for Continuous-Time Linear Systems
Mathematics
linear systems
spectral entropy
optimal control
robust control
algebraic Riccati equation
title State-Space Solution to Spectral Entropy Analysis and Optimal State-Feedback Control for Continuous-Time Linear Systems
title_full State-Space Solution to Spectral Entropy Analysis and Optimal State-Feedback Control for Continuous-Time Linear Systems
title_fullStr State-Space Solution to Spectral Entropy Analysis and Optimal State-Feedback Control for Continuous-Time Linear Systems
title_full_unstemmed State-Space Solution to Spectral Entropy Analysis and Optimal State-Feedback Control for Continuous-Time Linear Systems
title_short State-Space Solution to Spectral Entropy Analysis and Optimal State-Feedback Control for Continuous-Time Linear Systems
title_sort state space solution to spectral entropy analysis and optimal state feedback control for continuous time linear systems
topic linear systems
spectral entropy
optimal control
robust control
algebraic Riccati equation
url https://www.mdpi.com/2227-7390/12/22/3604
work_keys_str_mv AT victoraboichenko statespacesolutiontospectralentropyanalysisandoptimalstatefeedbackcontrolforcontinuoustimelinearsystems
AT alexeyabelov statespacesolutiontospectralentropyanalysisandoptimalstatefeedbackcontrolforcontinuoustimelinearsystems
AT olgagandrianova statespacesolutiontospectralentropyanalysisandoptimalstatefeedbackcontrolforcontinuoustimelinearsystems