Taylor's Expansion Revisited: A General Formula for the Remainder

We give a new approach to Taylor's remainder formula, via a generalization of Cauchy's generalized mean value theorem, which allows us to include the well-known Schölomilch, Lebesgue, Cauchy, and the Euler classic types, as particular cases.

Saved in:
Bibliographic Details
Main Authors: José Juan Rodríguez Cano, Enrique de Amo
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/2012/645736
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850159759434448896
author José Juan Rodríguez Cano
Enrique de Amo
author_facet José Juan Rodríguez Cano
Enrique de Amo
author_sort José Juan Rodríguez Cano
collection DOAJ
description We give a new approach to Taylor's remainder formula, via a generalization of Cauchy's generalized mean value theorem, which allows us to include the well-known Schölomilch, Lebesgue, Cauchy, and the Euler classic types, as particular cases.
format Article
id doaj-art-b2a97d5dde9f4fe7b284be5f4df13139
institution OA Journals
issn 0161-1712
1687-0425
language English
publishDate 2012-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-b2a97d5dde9f4fe7b284be5f4df131392025-08-20T02:23:24ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252012-01-01201210.1155/2012/645736645736Taylor's Expansion Revisited: A General Formula for the RemainderJosé Juan Rodríguez Cano0Enrique de Amo1Department of Algebra and Mathematical Analysis, University of Almería, Almería, 04120 Andalucía, SpainDepartment of Algebra and Mathematical Analysis, University of Almería, Almería, 04120 Andalucía, SpainWe give a new approach to Taylor's remainder formula, via a generalization of Cauchy's generalized mean value theorem, which allows us to include the well-known Schölomilch, Lebesgue, Cauchy, and the Euler classic types, as particular cases.http://dx.doi.org/10.1155/2012/645736
spellingShingle José Juan Rodríguez Cano
Enrique de Amo
Taylor's Expansion Revisited: A General Formula for the Remainder
International Journal of Mathematics and Mathematical Sciences
title Taylor's Expansion Revisited: A General Formula for the Remainder
title_full Taylor's Expansion Revisited: A General Formula for the Remainder
title_fullStr Taylor's Expansion Revisited: A General Formula for the Remainder
title_full_unstemmed Taylor's Expansion Revisited: A General Formula for the Remainder
title_short Taylor's Expansion Revisited: A General Formula for the Remainder
title_sort taylor s expansion revisited a general formula for the remainder
url http://dx.doi.org/10.1155/2012/645736
work_keys_str_mv AT josejuanrodriguezcano taylorsexpansionrevisitedageneralformulafortheremainder
AT enriquedeamo taylorsexpansionrevisitedageneralformulafortheremainder