Effective CO2 Decomposition in a Nonthermal Atmospheric Pressure Plasma Jet System Coupled with CuO Catalysts

Plasma‐assisted CO2 decomposition is a promising strategy for mitigating CO2 emissions. This study integrates a nonthermal atmospheric pressure plasma jet (NTAPPJ) system with CuO catalysts to enhance CO2 conversion, selectivity, and energy efficiency through synergistic plasma–catalyst interactions...

Full description

Saved in:
Bibliographic Details
Main Authors: Hsuan‐Hung Kuo, Chan‐Yu Liu, Yu‐Chen Wei, Chih‐Chiang Weng, Kao‐Der Chang, Yung‐Jung Hsu
Format: Article
Language:English
Published: Wiley-VCH 2025-07-01
Series:Advanced Energy & Sustainability Research
Subjects:
Online Access:https://doi.org/10.1002/aesr.202400409
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Plasma‐assisted CO2 decomposition is a promising strategy for mitigating CO2 emissions. This study integrates a nonthermal atmospheric pressure plasma jet (NTAPPJ) system with CuO catalysts to enhance CO2 conversion, selectivity, and energy efficiency through synergistic plasma–catalyst interactions. Optimization of discharge power and CO2 flow rate reveals that higher power increases CO output but reduces energy efficiency, while elevated flow rates improve CO yield but decrease conversion rates. Optimal conditions (100 W, 10 sccm CO2 flow rate) yield 37.98% conversion and 0.73% energy efficiency, with stable performance over 8 h. Experiments isolating photocatalytic and thermal catalytic contributions identify oxygen vacancies in CuO as active sites facilitating CO2 adsorption and activation. These findings establish NTAPPJ‐CuO systems as an innovative approach to plasma–catalyst CO2 decomposition, offering new insights into plasma–catalysis mechanism.
ISSN:2699-9412