Effective Tumor Annotation for Automated Diagnosis of Liver Cancer
In recent years, visual cancer information retrieval using Artificial Intelligence has been shown to be effective in diagnosis and treatment. Especially for a modern liver-cancer diagnosis system, the automated tumor annotation plays a crucial role. So-called tumor annotation refers to tagging the t...
Saved in:
| Main Authors: | , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
IEEE
2025-01-01
|
| Series: | IEEE Journal of Translational Engineering in Health and Medicine |
| Subjects: | |
| Online Access: | https://ieeexplore.ieee.org/document/11025471/ |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In recent years, visual cancer information retrieval using Artificial Intelligence has been shown to be effective in diagnosis and treatment. Especially for a modern liver-cancer diagnosis system, the automated tumor annotation plays a crucial role. So-called tumor annotation refers to tagging the tumor in Biomedical images by computer vision technologies such as Deep Learning. After annotation, the tumor information such as tumor location, tumor size and tumor characteristics can be output into a clinical report. To this end, this paper proposes an effective approach that includes tumor segmentation, tumor location, tumor measuring, and tumor recognition to achieve high-quality tumor annotation, thereby assisting radiologists in efficiently making accurate diagnosis reports. For tumor segmentation, a Multi-Residual Attention Unet is proposed to alleviate problems of vanishing gradient and information diversity. For tumor location, an effective Multi-SeResUnet is proposed to partition the liver into 8 couinaud segments. Based on the partitioned segments, the tumor is located accurately. For tumor recognition, an effective multi-labeling classifier is used to recognize the tumor characteristics by the visual tumor features. For tumor measuring, a regression model is proposed to measure the tumor size. To reveal the effectiveness of individual methods, each method was evaluated on real datasets. The experimental results reveal that the proposed methods are more promising than the state-of-the-art methods in tumor segmentation, tumor measuring, tumor localization and tumor recognition. Specifically, the average tumor size error and the annotation accuracy are 0.432 cm and 91.6%, respectively, which suggest potential for reducing radiologists’ workload. In summary, this paper proposes an effective tumor annotation for an automated diagnosis support system. Clinical and Translational Impact Statement—The proposed methods have been evaluated and shown to significantly improve the efficiency and accuracy of liver tumor annotation, reducing the time required for radiologists to complete reports on tumor segmentation, liver partition, tumor measuring and tumor recognition. By integrating into existing clinical decision support systems, it has the potential to reduce diagnostic errors and treatment delays, thereby improving patient outcomes and clinical workflow. |
|---|---|
| ISSN: | 2168-2372 |