APPROXIMATE CONTROLLABILITY OF IMPULSIVE STOCHASTIC SYSTEMS DRIVEN BY ROSENBLATT PROCESS AND BROWNIAN MOTION
In this paper we consider a class of impulsive stochastic functional differential equations driven simultaneously by a Rosenblatt process and standard Brownian motion in a Hilbert space. We prove an existence and uniqueness result and we establish some conditions ensuring the approximate controllabi...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Ural Branch of the Russian Academy of Sciences and Ural Federal University named after the first President of Russia B.N.Yeltsin, Krasovskii Institute of Mathematics and Mechanics
2022-12-01
|
| Series: | Ural Mathematical Journal |
| Subjects: | |
| Online Access: | https://umjuran.ru/index.php/umj/article/view/501 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this paper we consider a class of impulsive stochastic functional differential equations driven simultaneously by a Rosenblatt process and standard Brownian motion in a Hilbert space. We prove an existence and uniqueness result and we establish some conditions ensuring the approximate controllability for the mild solution by means of the Banach fixed point principle. At the end we provide a practical example in order to illustrate the viability of our result. |
|---|---|
| ISSN: | 2414-3952 |