APPROXIMATE CONTROLLABILITY OF IMPULSIVE STOCHASTIC SYSTEMS DRIVEN BY ROSENBLATT PROCESS AND BROWNIAN MOTION

In this paper we consider a class of impulsive stochastic functional differential equations driven simultaneously by a Rosenblatt process and standard Brownian motion in a Hilbert space. We prove an existence and uniqueness result and we establish some conditions ensuring the approximate controllabi...

Full description

Saved in:
Bibliographic Details
Main Author: Abbes Benchaabane
Format: Article
Language:English
Published: Ural Branch of the Russian Academy of Sciences and Ural Federal University named after the first President of Russia B.N.Yeltsin, Krasovskii Institute of Mathematics and Mechanics 2022-12-01
Series:Ural Mathematical Journal
Subjects:
Online Access:https://umjuran.ru/index.php/umj/article/view/501
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper we consider a class of impulsive stochastic functional differential equations driven simultaneously by a Rosenblatt process and standard Brownian motion in a Hilbert space. We prove an existence and uniqueness result and we establish some conditions ensuring the approximate controllability for the mild solution by means of the Banach fixed point principle. At the end we provide a practical example in order to illustrate the viability of our result.
ISSN:2414-3952