Universal extremum of hyperplanes in some optimization problems

This paper is concerned with the minimum distance between a point and a polyhedrons of some cclass in the Rn vexctor space suppliexl with different symme^trical norms. We find all hyperplanes where for all polyhedrons the point of Euclidean norm minimum is also one of the nearest points in any symme...

Full description

Saved in:
Bibliographic Details
Main Author: N. P. Fedotova
Format: Article
Language:English
Published: Yaroslavl State University 2010-09-01
Series:Моделирование и анализ информационных систем
Subjects:
Online Access:https://www.mais-journal.ru/jour/article/view/1042
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849688170702045184
author N. P. Fedotova
author_facet N. P. Fedotova
author_sort N. P. Fedotova
collection DOAJ
description This paper is concerned with the minimum distance between a point and a polyhedrons of some cclass in the Rn vexctor space suppliexl with different symme^trical norms. We find all hyperplanes where for all polyhedrons the point of Euclidean norm minimum is also one of the nearest points in any symmetrical norm. It simplifies the choice of criterion in some optimization problems.
format Article
id doaj-art-b1db75bda76d4b2fac3d5df389549017
institution DOAJ
issn 1818-1015
2313-5417
language English
publishDate 2010-09-01
publisher Yaroslavl State University
record_format Article
series Моделирование и анализ информационных систем
spelling doaj-art-b1db75bda76d4b2fac3d5df3895490172025-08-20T03:22:04ZengYaroslavl State UniversityМоделирование и анализ информационных систем1818-10152313-54172010-09-0117391106783Universal extremum of hyperplanes in some optimization problemsN. P. Fedotova0Ярославский государственный университет им. П.Г. ДемидоваThis paper is concerned with the minimum distance between a point and a polyhedrons of some cclass in the Rn vexctor space suppliexl with different symme^trical norms. We find all hyperplanes where for all polyhedrons the point of Euclidean norm minimum is also one of the nearest points in any symmetrical norm. It simplifies the choice of criterion in some optimization problems.https://www.mais-journal.ru/jour/article/view/1042normeuclidean <i>norm</i><i>symmetrical norm</i><i>distance</i><i>hyperplane</i><i>class of hyperplanes</i><i>class of polyhexlrons</i><i>r</i><sup><i></i></sup><sup><i>n </i></sup><i></i><i>space</i><i>optimization functions</i><i>optimization </i> <i>problems</i>
spellingShingle N. P. Fedotova
Universal extremum of hyperplanes in some optimization problems
Моделирование и анализ информационных систем
norm
euclidean <i>norm</i>
<i>symmetrical norm</i>
<i>distance</i>
<i>hyperplane</i>
<i>class of hyperplanes</i>
<i>class of polyhexlrons</i>
<i>r</i><sup><i></i></sup><sup><i>n </i></sup><i></i><i>space</i>
<i>optimization functions</i>
<i>optimization </i> <i>problems</i>
title Universal extremum of hyperplanes in some optimization problems
title_full Universal extremum of hyperplanes in some optimization problems
title_fullStr Universal extremum of hyperplanes in some optimization problems
title_full_unstemmed Universal extremum of hyperplanes in some optimization problems
title_short Universal extremum of hyperplanes in some optimization problems
title_sort universal extremum of hyperplanes in some optimization problems
topic norm
euclidean <i>norm</i>
<i>symmetrical norm</i>
<i>distance</i>
<i>hyperplane</i>
<i>class of hyperplanes</i>
<i>class of polyhexlrons</i>
<i>r</i><sup><i></i></sup><sup><i>n </i></sup><i></i><i>space</i>
<i>optimization functions</i>
<i>optimization </i> <i>problems</i>
url https://www.mais-journal.ru/jour/article/view/1042
work_keys_str_mv AT npfedotova universalextremumofhyperplanesinsomeoptimizationproblems