Universal extremum of hyperplanes in some optimization problems
This paper is concerned with the minimum distance between a point and a polyhedrons of some cclass in the Rn vexctor space suppliexl with different symme^trical norms. We find all hyperplanes where for all polyhedrons the point of Euclidean norm minimum is also one of the nearest points in any symme...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Yaroslavl State University
2010-09-01
|
| Series: | Моделирование и анализ информационных систем |
| Subjects: | |
| Online Access: | https://www.mais-journal.ru/jour/article/view/1042 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849688170702045184 |
|---|---|
| author | N. P. Fedotova |
| author_facet | N. P. Fedotova |
| author_sort | N. P. Fedotova |
| collection | DOAJ |
| description | This paper is concerned with the minimum distance between a point and a polyhedrons of some cclass in the Rn vexctor space suppliexl with different symme^trical norms. We find all hyperplanes where for all polyhedrons the point of Euclidean norm minimum is also one of the nearest points in any symmetrical norm. It simplifies the choice of criterion in some optimization problems. |
| format | Article |
| id | doaj-art-b1db75bda76d4b2fac3d5df389549017 |
| institution | DOAJ |
| issn | 1818-1015 2313-5417 |
| language | English |
| publishDate | 2010-09-01 |
| publisher | Yaroslavl State University |
| record_format | Article |
| series | Моделирование и анализ информационных систем |
| spelling | doaj-art-b1db75bda76d4b2fac3d5df3895490172025-08-20T03:22:04ZengYaroslavl State UniversityМоделирование и анализ информационных систем1818-10152313-54172010-09-0117391106783Universal extremum of hyperplanes in some optimization problemsN. P. Fedotova0Ярославский государственный университет им. П.Г. ДемидоваThis paper is concerned with the minimum distance between a point and a polyhedrons of some cclass in the Rn vexctor space suppliexl with different symme^trical norms. We find all hyperplanes where for all polyhedrons the point of Euclidean norm minimum is also one of the nearest points in any symmetrical norm. It simplifies the choice of criterion in some optimization problems.https://www.mais-journal.ru/jour/article/view/1042normeuclidean <i>norm</i><i>symmetrical norm</i><i>distance</i><i>hyperplane</i><i>class of hyperplanes</i><i>class of polyhexlrons</i><i>r</i><sup><i></i></sup><sup><i>n </i></sup><i></i><i>space</i><i>optimization functions</i><i>optimization </i> <i>problems</i> |
| spellingShingle | N. P. Fedotova Universal extremum of hyperplanes in some optimization problems Моделирование и анализ информационных систем norm euclidean <i>norm</i> <i>symmetrical norm</i> <i>distance</i> <i>hyperplane</i> <i>class of hyperplanes</i> <i>class of polyhexlrons</i> <i>r</i><sup><i></i></sup><sup><i>n </i></sup><i></i><i>space</i> <i>optimization functions</i> <i>optimization </i> <i>problems</i> |
| title | Universal extremum of hyperplanes in some optimization problems |
| title_full | Universal extremum of hyperplanes in some optimization problems |
| title_fullStr | Universal extremum of hyperplanes in some optimization problems |
| title_full_unstemmed | Universal extremum of hyperplanes in some optimization problems |
| title_short | Universal extremum of hyperplanes in some optimization problems |
| title_sort | universal extremum of hyperplanes in some optimization problems |
| topic | norm euclidean <i>norm</i> <i>symmetrical norm</i> <i>distance</i> <i>hyperplane</i> <i>class of hyperplanes</i> <i>class of polyhexlrons</i> <i>r</i><sup><i></i></sup><sup><i>n </i></sup><i></i><i>space</i> <i>optimization functions</i> <i>optimization </i> <i>problems</i> |
| url | https://www.mais-journal.ru/jour/article/view/1042 |
| work_keys_str_mv | AT npfedotova universalextremumofhyperplanesinsomeoptimizationproblems |