Integrating evolutionary algorithms and enhanced-YOLOv8 + for comprehensive apple ripeness prediction

Abstract The assessment of apple quality is pivotal in agricultural production management, and apple ripeness is a key determinant of apple quality. This paper proposes an approach for assessing apple ripeness from both structured and unstructured observation data, i.e., text and images. For structu...

Full description

Saved in:
Bibliographic Details
Main Authors: Yuchi Li, Zhigao Wang, Aiwei Yang, Xiaoqi Yu
Format: Article
Language:English
Published: Nature Portfolio 2025-03-01
Series:Scientific Reports
Subjects:
Online Access:https://doi.org/10.1038/s41598-025-91939-4
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract The assessment of apple quality is pivotal in agricultural production management, and apple ripeness is a key determinant of apple quality. This paper proposes an approach for assessing apple ripeness from both structured and unstructured observation data, i.e., text and images. For structured text data, support vector regression (SVR) models optimized using the Whale Optimization Algorithm (WOA), Grey Wolf Optimizer (GWO), and Sparrow Search Algorithm (SSA) were utilized to predict apple ripeness, with the WOA-optimized SVR demonstrating exceptional generalization capabilities. For unstructured image data, an Enhanced-YOLOv8+, a modified YOLOv8 architecture integrating Detect Efficient Head (DEH) and Efficient Channel Attention (ECA) mechanism, was employed for precise apple localization and ripeness identification. The synergistic application of these methods resulted in a significant improvement in prediction accuracy. These approaches provide a robust framework for apple quality assessment and deepen the understanding of the relationship between apple maturity and observed indicators, facilitating more informed decision-making in postharvest management.
ISSN:2045-2322