The application of artificial intelligence models in predicting the risk of diabetic foot: a multicenter study
Abstract This study explores diabetic foot (DF), a severe complication in diabetes, by combining deep learning (DL) and machine learning (ML) to develop a multi-model prediction tool. Early identification of high-risk DF patients can reduce disability and mortality. The research also aims to create...
Saved in:
| Main Authors: | , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
BMC
2025-08-01
|
| Series: | BioData Mining |
| Subjects: | |
| Online Access: | https://doi.org/10.1186/s13040-025-00477-2 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract This study explores diabetic foot (DF), a severe complication in diabetes, by combining deep learning (DL) and machine learning (ML) to develop a multi-model prediction tool. Early identification of high-risk DF patients can reduce disability and mortality. The research also aims to create an integrated application to assist clinicians in precise, efficient risk assessment for early intervention. In this multicenter retrospective study, 6,180 elderly diabetic patients (aged 60–85) were enrolled from 11 community hospitals in Shanghai in 2024. Lasso regression was used to identify 16 key DF risk factors, including age, MMSE score, lower limb discomfort, ABI, and hematocrit. Fourteen ML models (RF, XGBoost, CART, MLP, etc.) and three DL models (DNN, CNN, Transformer) were trained, with hyperparameters optimized via cross-validation and grid search. An application was developed integrating these models, offering both single and batch prediction options with visualization tools for clinical use. Experimental results showed the Logistic regression ensemble model achieved robust performance, with AUC values of 0.943 (validation set, 95% CI: 0.935–0.951) and 0.938 (test set, 95% CI: 0.929–0.947), along with high accuracy, precision, recall, and F1 scores. SHAP analysis revealed key predictive features including ABI results, lower limb discomfort, and MMSE score. The developed app integrates multiple models, compares their predictions for different clinical scenarios, and enhances prediction transparency and reliability.The multi-model approach demonstrates strong predictive performance for DF risk, offering clinicians an intuitive and accurate assessment tool tailored to individual patients. By combining multiple models, we enhance result stability and clinical applicability compared to single-model approaches. Future work will focus on algorithm optimization, expanded datasets, and real-time monitoring integration to enable more precise, dynamic risk evaluation for improved DF prevention and early intervention. |
|---|---|
| ISSN: | 1756-0381 |