Recognition of Transportation State by Smartphone Sensors Using Deep Bi-LSTM Neural Network

Smartphones have been used for recognizing different transportation states. However, current studies focus on the speed of the object, which only relies on the GPS sensor rather than considering other suitable sensors and actual application factors. In this study, we propose a novel method that cons...

Full description

Saved in:
Bibliographic Details
Main Authors: Hong Zhao, Chunning Hou, Hala Alrobassy, Xiangyan Zeng
Format: Article
Language:English
Published: Wiley 2019-01-01
Series:Journal of Computer Networks and Communications
Online Access:http://dx.doi.org/10.1155/2019/4967261
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Smartphones have been used for recognizing different transportation states. However, current studies focus on the speed of the object, which only relies on the GPS sensor rather than considering other suitable sensors and actual application factors. In this study, we propose a novel method that considers these factors comprehensively to enhance transportation state recognition. The deep Bi-LSTM (bidirectional long short-term memory) neural network structure, the crowd-sourcing model, and the TensorFlow deep learning system are used to classify the transportation states. Meanwhile, the data captured by the accelerometer and gyroscope sensors of smartphone is used to test and adjust the deep Bi-LSTM neural network model, making it easy to transfer the model into smartphones and conduct real-time recognition. The experimental results show that this study achieves transportation activity classification with an accuracy of up to 92.8%. The model of the deep Bi-LSTM neural network can be used for other time-series fields such as signal recognition and action analysis.
ISSN:2090-7141
2090-715X