Facile Fabrication of Composite Scaffolds for Long-Term Controlled Dual Drug Release

Bone tuberculosis (TB) caused by mycobacterium tuberculosis continues to present a formidable challenge to humans. To effectively cure serious bone TB, a novel kind of composite scaffolds with long-term dual drug release behaviours were prepared to satisfy the needs of both bone regeneration and ant...

Full description

Saved in:
Bibliographic Details
Main Authors: Dawei Li, Chao Li, Xing Wang, Chunlin Li, Tunan Sun, Jin Zhou, Gang Li
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Advances in Polymer Technology
Online Access:http://dx.doi.org/10.1155/2020/3927860
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bone tuberculosis (TB) caused by mycobacterium tuberculosis continues to present a formidable challenge to humans. To effectively cure serious bone TB, a novel kind of composite scaffolds with long-term dual drug release behaviours were prepared to satisfy the needs of both bone regeneration and antituberculosis drug therapy. In virtue of an improved O/W emulsion technique, water-soluble isoniazid (INH)-loaded gelatin microparticles were obtained by tailoring the content of β-tricalcium phosphate (β-TCP), which played significant roles in INH entrapment efficiency and drug release behaviours. By mixing with the poly(ε-caprolactone)-block-poly (lactic-co-glycolic acid) (b-PLGC) solution containing oil-soluble rifampicin (RFP) via the particle leaching combined with phase separation technique, the dual drugs-loaded composite scaffolds were fabricated, which possessed interconnected porous structures and achieved the steady release of INH and RFP drugs for three months. Moreover, this dual drugs-loaded system could basically achieve their expectant roles of respective drugs without obvious influences with each other. This strategy on preparation of intelligent composite scaffolds with the multi-drugs loading capacity and controlled long-term release behaviour will be potential and promising substrates in clinical treatment of bone tuberculosis.
ISSN:0730-6679
1098-2329