A noninvasive model for chronic kidney disease screening and common pathological type identification from retinal images
Abstract Chronic kidney disease (CKD) is a global health challenge, but invasive renal biopsies, the gold standard for diagnosis and prognosis, are often clinically constrained. To address this, we developed the kidney intelligent diagnosis system (KIDS), a noninvasive model for renal biopsy predict...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-07-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-025-62273-0 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Chronic kidney disease (CKD) is a global health challenge, but invasive renal biopsies, the gold standard for diagnosis and prognosis, are often clinically constrained. To address this, we developed the kidney intelligent diagnosis system (KIDS), a noninvasive model for renal biopsy prediction using 13,144 retinal images from 6773 participants. The KIDS achieves an area under the receiver operating characteristic curve (AUC) of 0.839–0.993 for CKD screening and accurately identifies the five most common pathological types (AUC: 0.790–0.932) in a multicenter and multi-ethnic validation, outperforming nephrologists by 26.98% in accuracy. Additionally, the KIDS further predicts disease progression based on pathological classification. Given its flexible strategy, the KIDS can be adapted to local conditions to provide a tailored tool for patients. This noninvasive model has the potential to improve CKD clinical management, particularly for those who are ineligible for biopsies. |
|---|---|
| ISSN: | 2041-1723 |