Interval and $\ell$-interval Rational Parking Functions
Interval parking functions are a generalization of parking functions in which cars have an interval preference for their parking. We generalize this definition to parking functions with $n$ cars and $m\geq n$ parking spots, which we call interval rational parking functions and provide a formula for...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Discrete Mathematics & Theoretical Computer Science
2024-11-01
|
| Series: | Discrete Mathematics & Theoretical Computer Science |
| Subjects: | |
| Online Access: | http://dmtcs.episciences.org/12598/pdf |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Interval parking functions are a generalization of parking functions in which cars have an interval preference for their parking. We generalize this definition to parking functions with $n$ cars and $m\geq n$ parking spots, which we call interval rational parking functions and provide a formula for their enumeration. By specifying an integer parameter $\ell\geq 0$, we then consider the subset of interval rational parking functions in which each car parks at most $\ell$ spots away from their initial preference. We call these $\ell$-interval rational parking functions and provide recursive formulas to enumerate this set for all positive integers $m\geq n$ and $\ell$. We also establish formulas for the number of nondecreasing $\ell$-interval rational parking functions via the outcome map on rational parking functions. We also consider the intersection between $\ell$-interval parking functions and Fubini rankings and show the enumeration of these sets is given by generalized Fibonacci numbers. We conclude by specializing $\ell=1$, and establish that the set of $1$-interval rational parking functions with $n$ cars and $m$ spots are in bijection with the set of barred preferential arrangements of $[n]$ with $m-n$ bars. This readily implies enumerative formulas. Further, in the case where $\ell=1$, we recover the results of Hadaway and Harris that unit interval parking functions are in bijection with the set of Fubini rankings, which are enumerated by the Fubini numbers. |
|---|---|
| ISSN: | 1365-8050 |