On the sharpness of some quantitative Muckenhoupt–Wheeden inequalities
In the recent work [Cruz-Uribe et al. (2021)] it was obtained that \[ |\lbrace x\in {\mathbb{R}^d}:w(x)|G(fw^{-1})(x)|>\alpha \rbrace |\lesssim \frac{[w]_{A_1}^2}{\alpha }\int _{{\mathbb{R}^d}}|f|\,\mathrm{d} x \] both in the matrix and scalar settings, where $G$ is either the Hardy–Littlewood ma...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2024-11-01
|
Series: | Comptes Rendus. Mathématique |
Subjects: | |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.638/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1825206178603335680 |
---|---|
author | Lerner, Andrei K. Li, Kangwei Ombrosi, Sheldy Rivera-Ríos, Israel P. |
author_facet | Lerner, Andrei K. Li, Kangwei Ombrosi, Sheldy Rivera-Ríos, Israel P. |
author_sort | Lerner, Andrei K. |
collection | DOAJ |
description | In the recent work [Cruz-Uribe et al. (2021)] it was obtained that
\[ |\lbrace x\in {\mathbb{R}^d}:w(x)|G(fw^{-1})(x)|>\alpha \rbrace |\lesssim \frac{[w]_{A_1}^2}{\alpha }\int _{{\mathbb{R}^d}}|f|\,\mathrm{d} x \]
both in the matrix and scalar settings, where $G$ is either the Hardy–Littlewood maximal function or any Calderón–Zygmund operator. In this note we show that the quadratic dependence on $[w]_{A_1}$ is sharp. This is done by constructing a sequence of scalar-valued weights with blowing up characteristics so that the corresponding bounds for the Hilbert transform and maximal function are exactly quadratic. |
format | Article |
id | doaj-art-b0bf075f1f6c4fb49fa01a3af009c082 |
institution | Kabale University |
issn | 1778-3569 |
language | English |
publishDate | 2024-11-01 |
publisher | Académie des sciences |
record_format | Article |
series | Comptes Rendus. Mathématique |
spelling | doaj-art-b0bf075f1f6c4fb49fa01a3af009c0822025-02-07T11:23:31ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-11-01362G101253126010.5802/crmath.63810.5802/crmath.638On the sharpness of some quantitative Muckenhoupt–Wheeden inequalitiesLerner, Andrei K.0Li, Kangwei1Ombrosi, Sheldy2Rivera-Ríos, Israel P.3Department of Mathematics, Bar-Ilan University, 5290002 Ramat Gan, IsraelCenter for Applied Mathematics, Tianjin University, Weijin Road 92, 300072 Tianjin, ChinaDepartamento de Análisis Matemático y Matemática Aplicada Universidad Complutense, Spain; Departamento de Matemática e Instituto de Matemática. Universidad Nacional del Sur - CONICET ArgentinaDepartamento de Análisis Matemático, Estadística e Investigación Operativa y Matemática Aplicada. Facultad de Ciencias. Universidad de Málaga (Málaga, Spain).In the recent work [Cruz-Uribe et al. (2021)] it was obtained that \[ |\lbrace x\in {\mathbb{R}^d}:w(x)|G(fw^{-1})(x)|>\alpha \rbrace |\lesssim \frac{[w]_{A_1}^2}{\alpha }\int _{{\mathbb{R}^d}}|f|\,\mathrm{d} x \] both in the matrix and scalar settings, where $G$ is either the Hardy–Littlewood maximal function or any Calderón–Zygmund operator. In this note we show that the quadratic dependence on $[w]_{A_1}$ is sharp. This is done by constructing a sequence of scalar-valued weights with blowing up characteristics so that the corresponding bounds for the Hilbert transform and maximal function are exactly quadratic.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.638/Matrix weightsquantitative boundsendpoint estimates |
spellingShingle | Lerner, Andrei K. Li, Kangwei Ombrosi, Sheldy Rivera-Ríos, Israel P. On the sharpness of some quantitative Muckenhoupt–Wheeden inequalities Comptes Rendus. Mathématique Matrix weights quantitative bounds endpoint estimates |
title | On the sharpness of some quantitative Muckenhoupt–Wheeden inequalities |
title_full | On the sharpness of some quantitative Muckenhoupt–Wheeden inequalities |
title_fullStr | On the sharpness of some quantitative Muckenhoupt–Wheeden inequalities |
title_full_unstemmed | On the sharpness of some quantitative Muckenhoupt–Wheeden inequalities |
title_short | On the sharpness of some quantitative Muckenhoupt–Wheeden inequalities |
title_sort | on the sharpness of some quantitative muckenhoupt wheeden inequalities |
topic | Matrix weights quantitative bounds endpoint estimates |
url | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.638/ |
work_keys_str_mv | AT lernerandreik onthesharpnessofsomequantitativemuckenhouptwheedeninequalities AT likangwei onthesharpnessofsomequantitativemuckenhouptwheedeninequalities AT ombrosisheldy onthesharpnessofsomequantitativemuckenhouptwheedeninequalities AT riverariosisraelp onthesharpnessofsomequantitativemuckenhouptwheedeninequalities |