On the sharpness of some quantitative Muckenhoupt–Wheeden inequalities

In the recent work [Cruz-Uribe et al. (2021)] it was obtained that \[ |\lbrace x\in {\mathbb{R}^d}:w(x)|G(fw^{-1})(x)|>\alpha \rbrace |\lesssim \frac{[w]_{A_1}^2}{\alpha }\int _{{\mathbb{R}^d}}|f|\,\mathrm{d} x \] both in the matrix and scalar settings, where $G$ is either the Hardy–Littlewood ma...

Full description

Saved in:
Bibliographic Details
Main Authors: Lerner, Andrei K., Li, Kangwei, Ombrosi, Sheldy, Rivera-Ríos, Israel P.
Format: Article
Language:English
Published: Académie des sciences 2024-11-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.638/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206178603335680
author Lerner, Andrei K.
Li, Kangwei
Ombrosi, Sheldy
Rivera-Ríos, Israel P.
author_facet Lerner, Andrei K.
Li, Kangwei
Ombrosi, Sheldy
Rivera-Ríos, Israel P.
author_sort Lerner, Andrei K.
collection DOAJ
description In the recent work [Cruz-Uribe et al. (2021)] it was obtained that \[ |\lbrace x\in {\mathbb{R}^d}:w(x)|G(fw^{-1})(x)|>\alpha \rbrace |\lesssim \frac{[w]_{A_1}^2}{\alpha }\int _{{\mathbb{R}^d}}|f|\,\mathrm{d} x \] both in the matrix and scalar settings, where $G$ is either the Hardy–Littlewood maximal function or any Calderón–Zygmund operator. In this note we show that the quadratic dependence on $[w]_{A_1}$ is sharp. This is done by constructing a sequence of scalar-valued weights with blowing up characteristics so that the corresponding bounds for the Hilbert transform and maximal function are exactly quadratic.
format Article
id doaj-art-b0bf075f1f6c4fb49fa01a3af009c082
institution Kabale University
issn 1778-3569
language English
publishDate 2024-11-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-b0bf075f1f6c4fb49fa01a3af009c0822025-02-07T11:23:31ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-11-01362G101253126010.5802/crmath.63810.5802/crmath.638On the sharpness of some quantitative Muckenhoupt–Wheeden inequalitiesLerner, Andrei K.0Li, Kangwei1Ombrosi, Sheldy2Rivera-Ríos, Israel P.3Department of Mathematics, Bar-Ilan University, 5290002 Ramat Gan, IsraelCenter for Applied Mathematics, Tianjin University, Weijin Road 92, 300072 Tianjin, ChinaDepartamento de Análisis Matemático y Matemática Aplicada Universidad Complutense, Spain; Departamento de Matemática e Instituto de Matemática. Universidad Nacional del Sur - CONICET ArgentinaDepartamento de Análisis Matemático, Estadística e Investigación Operativa y Matemática Aplicada. Facultad de Ciencias. Universidad de Málaga (Málaga, Spain).In the recent work [Cruz-Uribe et al. (2021)] it was obtained that \[ |\lbrace x\in {\mathbb{R}^d}:w(x)|G(fw^{-1})(x)|>\alpha \rbrace |\lesssim \frac{[w]_{A_1}^2}{\alpha }\int _{{\mathbb{R}^d}}|f|\,\mathrm{d} x \] both in the matrix and scalar settings, where $G$ is either the Hardy–Littlewood maximal function or any Calderón–Zygmund operator. In this note we show that the quadratic dependence on $[w]_{A_1}$ is sharp. This is done by constructing a sequence of scalar-valued weights with blowing up characteristics so that the corresponding bounds for the Hilbert transform and maximal function are exactly quadratic.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.638/Matrix weightsquantitative boundsendpoint estimates
spellingShingle Lerner, Andrei K.
Li, Kangwei
Ombrosi, Sheldy
Rivera-Ríos, Israel P.
On the sharpness of some quantitative Muckenhoupt–Wheeden inequalities
Comptes Rendus. Mathématique
Matrix weights
quantitative bounds
endpoint estimates
title On the sharpness of some quantitative Muckenhoupt–Wheeden inequalities
title_full On the sharpness of some quantitative Muckenhoupt–Wheeden inequalities
title_fullStr On the sharpness of some quantitative Muckenhoupt–Wheeden inequalities
title_full_unstemmed On the sharpness of some quantitative Muckenhoupt–Wheeden inequalities
title_short On the sharpness of some quantitative Muckenhoupt–Wheeden inequalities
title_sort on the sharpness of some quantitative muckenhoupt wheeden inequalities
topic Matrix weights
quantitative bounds
endpoint estimates
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.638/
work_keys_str_mv AT lernerandreik onthesharpnessofsomequantitativemuckenhouptwheedeninequalities
AT likangwei onthesharpnessofsomequantitativemuckenhouptwheedeninequalities
AT ombrosisheldy onthesharpnessofsomequantitativemuckenhouptwheedeninequalities
AT riverariosisraelp onthesharpnessofsomequantitativemuckenhouptwheedeninequalities