A Sparsity Preestimated Adaptive Matching Pursuit Algorithm

In the matching pursuit algorithm of compressed sensing, the traditional reconstruction algorithm needs to know the signal sparsity. The sparsity adaptive matching pursuit (SAMP) algorithm can adaptively approach the signal sparsity when the sparsity is unknown. However, the SAMP algorithm starts fr...

Full description

Saved in:
Bibliographic Details
Main Authors: Xinhe Zhang, Yufeng Liu, Xin Wang
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:Journal of Electrical and Computer Engineering
Online Access:http://dx.doi.org/10.1155/2021/5598180
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the matching pursuit algorithm of compressed sensing, the traditional reconstruction algorithm needs to know the signal sparsity. The sparsity adaptive matching pursuit (SAMP) algorithm can adaptively approach the signal sparsity when the sparsity is unknown. However, the SAMP algorithm starts from zero and iterates several times with a fixed step size to approximate the true sparsity, which increases the runtime. To increase the run speed, a sparsity preestimated adaptive matching pursuit (SPAMP) algorithm is proposed in this paper. Firstly, the sparsity preestimated strategy is used to estimate the sparsity, and then the signal is reconstructed by the SAMP algorithm with the preestimated sparsity as the iterative initial value. The method reconstructs the signal from the preestimated sparsity, which reduces the number of iterations and greatly speeds up the run efficiency.
ISSN:2090-0147
2090-0155