A Clustering Approach Using Cooperative Artificial Bee Colony Algorithm

Artificial Bee Colony (ABC) is one of the most recently introduced algorithms based on the intelligent foraging behavior of a honey bee swarm. This paper presents an extended ABC algorithm, namely, the Cooperative Article Bee Colony (CABC), which significantly improves the original ABC in solving co...

Full description

Saved in:
Bibliographic Details
Main Authors: Wenping Zou, Yunlong Zhu, Hanning Chen, Xin Sui
Format: Article
Language:English
Published: Wiley 2010-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2010/459796
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Artificial Bee Colony (ABC) is one of the most recently introduced algorithms based on the intelligent foraging behavior of a honey bee swarm. This paper presents an extended ABC algorithm, namely, the Cooperative Article Bee Colony (CABC), which significantly improves the original ABC in solving complex optimization problems. Clustering is a popular data analysis and data mining technique; therefore, the CABC could be used for solving clustering problems. In this work, first the CABC algorithm is used for optimizing six widely used benchmark functions and the comparative results produced by ABC, Particle Swarm Optimization (PSO), and its cooperative version (CPSO) are studied. Second, the CABC algorithm is used for data clustering on several benchmark data sets. The performance of CABC algorithm is compared with PSO, CPSO, and ABC algorithms on clustering problems. The simulation results show that the proposed CABC outperforms the other three algorithms in terms of accuracy, robustness, and convergence speed.
ISSN:1026-0226
1607-887X