Backward Stochastic Linear Quadratic Optimal Control with Expectational Equality Constraint

This paper investigates a backward stochastic linear quadratic control problem with an expected-type equality constraint on the initial state. By using the Lagrange multiplier method, the problem with a uniformly convex cost functional is first transformed into an equivalent unconstrained parameteri...

Full description

Saved in:
Bibliographic Details
Main Authors: Yanrong Lu, Jize Li, Yonghui Zhou
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/8/1327
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper investigates a backward stochastic linear quadratic control problem with an expected-type equality constraint on the initial state. By using the Lagrange multiplier method, the problem with a uniformly convex cost functional is first transformed into an equivalent unconstrained parameterized backward stochastic linear quadratic control problem. Then, under the surjectivity of the linear constraint, the equivalence between the original problem and the dual problem is proven by Lagrange duality theory. Subsequently, with the help of the maximum principle, an explicit solution of the optimal control for the unconstrained problem is obtained. This solution is feedback-based and determined by an adjoint stochastic differential equation, a Riccati-type ordinary differential equation, a backward stochastic differential equation, and an equality, thereby yielding the optimal control for the original problem. Finally, an optimal control for an investment portfolio problem with an expected-type equality constraint on the initial state is explicitly provided.
ISSN:2227-7390