Distributed Graph Coloring for Self-Organization in LTE Networks

Primary Component Carrier Selection and Physical Cell ID Assignment are two important self-configuration problems pertinent to LTE-Advanced. In this work, we investigate the possibility to solve these problems in a distributive manner using a graph coloring approach. Algorithms based on real-valued...

Full description

Saved in:
Bibliographic Details
Main Authors: Furqan Ahmed, Olav Tirkkonen, Matti Peltomäki, Juha-Matti Koljonen, Chia-Hao Yu, Mikko Alava
Format: Article
Language:English
Published: Wiley 2010-01-01
Series:Journal of Electrical and Computer Engineering
Online Access:http://dx.doi.org/10.1155/2010/402831
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Primary Component Carrier Selection and Physical Cell ID Assignment are two important self-configuration problems pertinent to LTE-Advanced. In this work, we investigate the possibility to solve these problems in a distributive manner using a graph coloring approach. Algorithms based on real-valued interference pricing of conflicts converge rapidly to a local optimum, whereas algorithms with binary interference pricing have a chance to find a global optimum. We apply both local search algorithms and complete algorithms such as Asynchronous Weak-Commitment Search. For system level performance evaluation, a picocellular scenario is considered, with indoor base stations in office houses placed in a Manhattan grid. We investigate a growing network, where neighbor cell lists are generated using practical measurement and reporting models. Distributed selection of conflict-free primary component carriers is shown to converge with 5 or more component carriers, while distributed assignment of confusion-free physical cell IDs is shown to converge with less than 15 IDs. The results reveal that the use of binary pricing of interference with an attempt to find a global optimum outperforms real-valued pricing.
ISSN:2090-0147
2090-0155