Distributed Graph Coloring for Self-Organization in LTE Networks
Primary Component Carrier Selection and Physical Cell ID Assignment are two important self-configuration problems pertinent to LTE-Advanced. In this work, we investigate the possibility to solve these problems in a distributive manner using a graph coloring approach. Algorithms based on real-valued...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2010-01-01
|
| Series: | Journal of Electrical and Computer Engineering |
| Online Access: | http://dx.doi.org/10.1155/2010/402831 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Primary Component Carrier Selection and Physical Cell ID Assignment are two important self-configuration problems pertinent to LTE-Advanced. In this work, we investigate the possibility to solve these problems in a distributive manner using a graph coloring approach. Algorithms based on real-valued interference pricing of conflicts converge rapidly to a local optimum, whereas algorithms with binary interference pricing have a chance to find a global optimum. We apply both local search algorithms and complete algorithms such as Asynchronous Weak-Commitment Search. For system level performance evaluation, a picocellular scenario is considered, with indoor base stations in office houses placed in a Manhattan grid. We investigate a growing network, where neighbor cell lists are generated using practical measurement and reporting models. Distributed selection of conflict-free primary component carriers is shown to converge with 5 or more component carriers, while distributed assignment of confusion-free physical cell IDs is shown to converge with less than 15 IDs. The results reveal that the use of binary pricing of interference with an attempt to find a global optimum outperforms real-valued pricing. |
|---|---|
| ISSN: | 2090-0147 2090-0155 |