Mathematical morphology and poset geometry
The aim of this paper is to characterize morphological convex geometries (resp., antimatroids). We define these two structures by using closure operators, and kernel operators. We show that these convex geometries are equivalent to poset geometries.
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2001-01-01
|
| Series: | International Journal of Mathematics and Mathematical Sciences |
| Online Access: | http://dx.doi.org/10.1155/S0161171201006718 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849396614120079360 |
|---|---|
| author | Alain Bretto Enzo Maria Li Marzi |
| author_facet | Alain Bretto Enzo Maria Li Marzi |
| author_sort | Alain Bretto |
| collection | DOAJ |
| description | The aim of this paper is to characterize morphological convex
geometries (resp., antimatroids). We define these two structures
by using closure operators, and kernel operators. We show that
these convex geometries are equivalent to poset geometries. |
| format | Article |
| id | doaj-art-b01afbe2b8b24f64acbfa50838d209e3 |
| institution | Kabale University |
| issn | 0161-1712 1687-0425 |
| language | English |
| publishDate | 2001-01-01 |
| publisher | Wiley |
| record_format | Article |
| series | International Journal of Mathematics and Mathematical Sciences |
| spelling | doaj-art-b01afbe2b8b24f64acbfa50838d209e32025-08-20T03:39:17ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252001-01-0128844745310.1155/S0161171201006718Mathematical morphology and poset geometryAlain Bretto0Enzo Maria Li Marzi1University of Saint-Etienne, LIGIV, Site G.I.A.T Industries 3, Rue Javelin Pagnon, BP 505, Saint-Etienne Cedex 1 42007, FranceDepartment of Mathematics, University of Messina, Contrada Papardo, Salita Sperone 31 98166 Sant'Agata, Messina, ItalyThe aim of this paper is to characterize morphological convex geometries (resp., antimatroids). We define these two structures by using closure operators, and kernel operators. We show that these convex geometries are equivalent to poset geometries.http://dx.doi.org/10.1155/S0161171201006718 |
| spellingShingle | Alain Bretto Enzo Maria Li Marzi Mathematical morphology and poset geometry International Journal of Mathematics and Mathematical Sciences |
| title | Mathematical morphology and poset geometry |
| title_full | Mathematical morphology and poset geometry |
| title_fullStr | Mathematical morphology and poset geometry |
| title_full_unstemmed | Mathematical morphology and poset geometry |
| title_short | Mathematical morphology and poset geometry |
| title_sort | mathematical morphology and poset geometry |
| url | http://dx.doi.org/10.1155/S0161171201006718 |
| work_keys_str_mv | AT alainbretto mathematicalmorphologyandposetgeometry AT enzomarialimarzi mathematicalmorphologyandposetgeometry |